On a variational approximation method for a class of elliptic Eigenvalue problems in composite structures
نویسندگان
چکیده
We consider a second-order elliptic eigenvalue problem on a convex polygonal domain, divided in M nonoverlapping subdomains. The conormal derivative of the unknown function is continuous on the interfaces, while the function itself is discontinuous. We present a general finite element method to obtain a numerical solution of the eigenvalue problem, starting from a nonstandard formally equivalent variational formulation in an abstract setting in product Hilbert spaces. We use standard Lagrange finite element spaces on the subdomains. Moreover, the bilinear forms are approximated by suitable numerical quadrature formulas. We obtain error estimates for both the eigenfunctions and the eigenvalues, allowing for the case of multiple exact eigenvalues, by a pure variational method.
منابع مشابه
An operator method for a numerical quadrature finite element approximation for a class of second-order elliptic eigenvalue problems in composite structures
— We consider a second-order elliptic eigenvalue problem on a convex polygonal domain, divided in M non-overlapping subdomains. The conormal derivative of the unknown function is continuons on the interfaces, while the function itself is discontinuons. In this paper, we study the finite element approximation without and with numerical quadrature of this eigenvalue problem by means of the pertur...
متن کاملA numerical technique for solving a class of 2D variational problems using Legendre spectral method
An effective numerical method based on Legendre polynomials is proposed for the solution of a class of variational problems with suitable boundary conditions. The Ritz spectral method is used for finding the approximate solution of the problem. By utilizing the Ritz method, the given nonlinear variational problem reduces to the problem of solving a system of algebraic equations. The advantage o...
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملExistence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 65 شماره
صفحات -
تاریخ انتشار 1996