Exponential Mixing for the Teichmüller Flow in the Space of Quadratic Differentials

نویسنده

  • ARTUR AVILA
چکیده

We consider the Teichmüller flow on the unit cotangent bundle of the moduli space of compact Riemann surfaces with punctures. We show that it is exponentially mixing for the Ratner class of observables. More generally, this result holds for the restriction of the Teichmüller flow to an arbitrary connected component of stratum. This result generalizes [AGY] which considered the case of strata of squares.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decay of Correlations for the Rauzy-veech-zorich Induction Map on the Space of Interval Exchange Transformations and the Central Limit Theorem for the Teichmüller Flow on the Moduli Space of Abelian Differentials

The aim of this paper is to prove a stretched-exponential bound for the decay of correlations for the Rauzy-Veech-Zorich induction map on the space of interval exchange transformations (Theorem 4). A corollary is the Central Limit Theorem for the Teichmüller flow on the moduli space of abelian differentials with prescribed singularities (Theorem 10). The proof of Theorem 4 proceeds by the metho...

متن کامل

Exponential Thurston Maps and Limits of Quadratic Differentials

Contents 1. Introduction 2 Organization of the paper 3 2. The characterization theorem 4 2.1. Definitions and statement of the main theorem 4 2.2. Classification of postsingularly finite exponential maps 4 3. Iteration in Teichmüler space 6 3.1. The Teichmüler space of a topological exponential map 7 3.2. The Teichmüler metric and its dual 8 3.3. Examples of quadratic differentials 9 3.4. Proof...

متن کامل

asymptotics of the Teichmüller harmonic map flow

The Teichmüller harmonic map flow, introduced in [9], evolves both a map from a closed Riemann surface to an arbitrary compact Riemannian manifold, and a constant curvature metric on the domain, in order to reduce its harmonic map energy as quickly as possible. In this paper, we develop the geometric analysis of holomorphic quadratic differentials in order to explain what happens in the case th...

متن کامل

Geometry of Teichmüller space with the Teichmüller metric

The purpose of this chapter is to describe recent progress in the study of Teichmüller geometry. We focus entirely on the Teichmüller metric. A survey of the very important Weil-Petersson metric can be found in [W]. The study of the Teichmüller metric has different aspects. One major theme in the subject is to what extent Teichmüller space with the Teichmüller metric resembles a metric of negat...

متن کامل

Divergence of Geodesics in Teichmüller Space and the Mapping Class Group Moon Duchin and Kasra Rafi

We show that both Teichmüller space (with the Teichmüller metric) and the mapping class group (with a word metric) have geodesic divergence that is intermediate between the linear rate of flat spaces and the exponential rate of hyperbolic spaces. For every two geodesic rays in Teichmüller space, we find that their divergence is at most quadratic. Furthermore, this estimate is shown to be sharp ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009