A computational model of chemotaxis-based cell aggregation

نویسندگان

  • Manolya Eyiyurekli
  • Prakash Manley
  • Peter I. Lelkes
  • David E. Breen
چکیده

We present a computational model that successfully captures the cell behaviors that play important roles in 2-D cell aggregation. A virtual cell in our model is designed as an independent, discrete unit with a set of parameters and actions. Each cell is defined by its location, size, rates of chemoattractant emission and response, age, life cycle stage, proliferation rate and number of attached cells. All cells are capable of emitting and sensing a chemoattractant chemical, moving, attaching to other cells, dividing, aging and dying. We validated and fine-tuned our in silico model by comparing simulated 24-h aggregation experiments with data derived from in vitro experiments using PC12 pheochromocytoma cells. Quantitative comparisons of the aggregate size distributions from the two experiments are produced using the Earth Mover's Distance (EMD) metric. We compared the two size distributions produced after 24 h of in vitro cell aggregation and the corresponding computer simulated process. Iteratively modifying the model's parameter values and measuring the difference between the in silico and in vitro results allow us to determine the optimal values that produce simulated aggregation outcomes closely matched to the PC12 experiments. Simulation results demonstrate the ability of the model to recreate large-scale aggregation behaviors seen in live cell experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Computational System for Investigating Chemotaxis-Based Cell Aggregation

We have developed a software system that simulates chemotaxis-based cell aggregation in 2D. The model implemented within the system consists of such cell behaviors as chemical diffusion/detection, motility, proliferation, adhesion and life cycle stages. Each virtual cell detects the state of the environment, and responds to the environment based on a pre-defined “program” and its own internal s...

متن کامل

International Journal of Mathematics and Computer Sciences (IJMCS) ISSN: 2305-7661 Vol.21 September 2013 International Scientific Researchers (ISR)

We develop a novel upwind-difference potentials method for the Patlak-Keller-Segel chemotaxis model that can be used to approximate problems in complex geometries. The chemotaxis model under consideration is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. Chemotaxi...

متن کامل

Upwind-difference Potentials Method for Chemotaxis Models

We consider here a recently developed upwind-difference potentials method for chemotaxis models [8]. The introduced scheme can be used to approximate problems in complex geometries. The chemotaxis model under consideration is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reactiondiffusion equation for the chemoattractant concent...

متن کامل

A discrete cell model with adaptive signalling for aggregation of Dictyostelium discoideum.

Dictyostelium discoideum (Dd) is a widely studied model system from which fundamental insights into cell movement, chemotaxis, aggregation and pattern formation can be gained. In this system aggregation results from the chemotactic response by dispersed amoebae to a travelling wave of the chemoattractant cAMP. We have developed a model in which the cells are treated as discrete points in a cont...

متن کامل

Role of streams in myxobacteria aggregate formation.

Cell contact, movement and directionality are important factors in biological development (morphogenesis), and myxobacteria are a model system for studying cell-cell interaction and cell organization preceding differentiation. When starved, thousands of myxobacteria cells align, stream and form aggregates which later develop into round, non-motile spores. Canonically, cell aggregation has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bio Systems

دوره 93 3  شماره 

صفحات  -

تاریخ انتشار 2008