GoldIII porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species.
نویسندگان
چکیده
Apoptosis is a tightly controlled multistep mechanism of cell death, and mitochondria are considered to play a central role in this process. Mitochondria initiate two distinct apoptosis pathways, one caspase-dependent and the other caspase-independent. In addition, mitochondrial production of reactive oxygen species (ROS) seems to play a role in cell death. Most chemotherapeutic agents induce apoptosis through at least one of these pathways. The post-initiation mechanisms of gold(III) porphyrin 1a were investigated in this study. HONE1 cells exposed to gold(III) porphyrin 1a underwent apoptosis after 24 hours. Functional proteomic studies revealed the alteration of several cytoplasmic protein expressions in HONE1 cells after treatment with the drug. These proteins include enzymes participating in energy production and proteins involved in cellular redox balance. There was a quick attenuation of mitochondrial membrane potential (DeltaPsi(m)) with the alterations of Bcl-2 family proteins, the release of cytochrome c, and apoptosis-inducing factor (AIF) following gold(III) porphyrin 1a treatment. Cytochrome c in turn activated caspase-9 and caspase-3. Cotreatment with caspase inhibitor (zVAD-fmk) showed that the activated caspases worked in conjunction with AIF-initiated apoptosis pathways. Further study showed that ROS played a part in gold(III) porphyrin 1a-induced apoptosis by regulating DeltaPsi(m). In summary, gold(III) porphyrin 1a induced apoptosis through both caspase-dependent and caspase-independent mitochondrial pathways, and intracellular oxidation affected gold(III) porphyrin 1a-induced apoptosis. These results support a role for gold(III) porphyrin 1a as a promising anticancer drug lead and as a possible novel therapeutic agent directed toward the mitochondria.
منابع مشابه
Death Pathways Related to Reactive Oxygen Species Gold(III) Porphyrin 1a Induced Apoptosis by Mitochondrial
Apoptosis is a tightly controlled multistep mechanism of cell death, and mitochondria are considered to play a central role in this process. Mitochondria initiate two distinct apoptosis pathways, one caspase-dependent and the other caspaseindependent. In addition, mitochondrial production of reactive oxygen species (ROS) seems to play a role in cell death. Most chemotherapeutic agents induce ap...
متن کاملRole of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملHeavy Metal Induced Cell Necrosis: Involves Apoptosis Death Signals Initiated by Mitochondrial Injury
Introduction: Severe industrial diseases result from the hepatic accumulation of mercury, cadmium or chromium in humans and on the other hand cadmium and dichromate and mercuric salts may induce lung or kidney cancer. Acute or chronic CdCl2, HgCl2 or dichromate administration induces hepatic and nephrotoxicity in rodents. Oxidative stress is often cited as a possible cause of metal induced cell...
متن کاملIron Overload Induced Apoptotic Cell Death in Isolated Rat Hepatocytes Mediated by Reactive Oxygen Species
Isolated rat hepatocytes in culture were incubated with different concentrations of iron-sorbitol (50, 100, 150, and 200 µM) to assess the changes in reactive oxygen species (ROS) and lipid peroxidation leading to apoptotic hepatocyte cell death. The viability of hepatocytes was declined depending on the iron concentration. One hour incubation of the cells with 100 µM iron resulted in decreased...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 65 24 شماره
صفحات -
تاریخ انتشار 2005