Calcium-gated calcium channels in sarcoplasmic reticulum of rabbit skinned skeletal muscle fibers

نویسندگان

  • P Volpe
  • G Salviati
  • A Chu
چکیده

The action of ruthenium red (RR) on Ca2+ loading by and Ca2+ release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated. Ca2+ loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method. Ca2+ release was indirectly measured by following tension development evoked by caffeine. Stimulation of the Ca2+ loading rate by 5 microM RR was dependent on free Ca2+, being maximal at pCa 5.56. Isometric force development induced by 5 mM caffeine was reversibly antagonized by RR. IC50 for the rate of tension rise was 0.5 microM; that for the extent of tension was 4 microM. RR slightly shifted the steady state isometric force/pCa curve toward lower pCa values. At 5 microM RR, the pCa required for half-maximal force was 0.2 log units lower than that of the control, and maximal force was depressed by approximately 16%. These results suggest that RR inhibited Ca2+ release from the SR and stimulated Ca2+ loading into the SR by closing Ca2+-gated Ca2+ channels. Previous studies on isolated SR have indicated the selective presence of such channels in junctional terminal cisternae.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calcium-gated Calcium Channels

The action of ruthenium red (RR) on Ca" loading by and Ca" release from the sarcoplasmic reticulum (SR) of chemically skinned skeletal muscle fibers of the rabbit was investigated . Ca" loading, in the presence of the precipitating anion pyrophosphate, was monitored by a light-scattering method . Ca" release was indirectly measured by following tension development evoked by caffeine . Stimulati...

متن کامل

Quercetin stimulation of calcium release from rabbit skeletal muscle sarcoplasmic reticulum.

To elucidate the mechanism by which quercetin enhances the rate of tension development in skinned muscle fibers, effects on calcium release from longitudinal tubule-derived SR (LSR) after phosphate-supported calcium uptake were examined. In all studies, 100 microM quercetin (which inhibits initial calcium uptake velocity 85%) was added at or shortly after the time calcium content reached a maxi...

متن کامل

Developmental and tissue-specific regulation of rabbit skeletal and cardiac muscle calcium channels involved in excitation-contraction coupling.

Two types of calcium channels signal excitation-contraction (E-C) coupling in striated muscle: dihydropyridine receptors (DHPRs, voltage-gated L-type calcium channels on the transverse tubule) and ryanodine receptors (RyRs, calcium release channels on the sarcoplasmic reticulum). Sarcolemmal depolarization activates the DHPR; subsequently, the RyR is activated and releases calcium that activate...

متن کامل

The sarcoplasmic reticulum of smooth muscle fibers.

The ability of the sarcoplasmic (endoplasmic) reticulum (SR, ER) of smooth muscle cells to accumulate Ca was demonstrated by measuring the uptake of 45Ca in fibers which were chemically skinned with saponin, and by electron cytochemistry of the accumulated Ca. The Ca uptake was dependent on ATP and it was stimulated by oxalate, as it is the case in SR of striated muscle. Electron microscopy of ...

متن کامل

Mechanisms of Pi regulation of the skeletal muscle SR Ca21 release channel

Balog, Edward M., Bradley R. Fruen, Patricia K. Kane, and Charles F. Louis. Mechanisms of Pi regulation of the skeletal muscle SR Ca21 release channel. Am. J. Physiol. Cell Physiol. 278: C601–C611, 2000.—Inorganic phosphate (Pi) accumulates in the fibers of actively working muscle where it acts at various sites to modulate contraction. To characterize the role of Pi as a regulator of the sarcop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 87  شماره 

صفحات  -

تاریخ انتشار 1986