Compressed sensing for rapid late gadolinium enhanced imaging of the left atrium: A preliminary study.

نویسندگان

  • Srikant Kamesh Iyer
  • Tolga Tasdizen
  • Nathan Burgon
  • Eugene Kholmovski
  • Nassir Marrouche
  • Ganesh Adluru
  • Edward DiBella
چکیده

Current late gadolinium enhancement (LGE) imaging of left atrial (LA) scar or fibrosis is relatively slow and requires 5-15min to acquire an undersampled (R=1.7) 3D navigated dataset. The GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) based parallel imaging method is the current clinical standard for accelerating 3D LGE imaging of the LA and permits an acceleration factor ~R=1.7. Two compressed sensing (CS) methods have been developed to achieve higher acceleration factors: a patch based collaborative filtering technique tested with acceleration factor R~3, and a technique that uses a 3D radial stack-of-stars acquisition pattern (R~1.8) with a 3D total variation constraint. The long reconstruction time of these CS methods makes them unwieldy to use, especially the patch based collaborative filtering technique. In addition, the effect of CS techniques on the quantification of percentage of scar/fibrosis is not known. We sought to develop a practical compressed sensing method for imaging the LA at high acceleration factors. In order to develop a clinically viable method with short reconstruction time, a Split Bregman (SB) reconstruction method with 3D total variation (TV) constraints was developed and implemented. The method was tested on 8 atrial fibrillation patients (4 pre-ablation and 4 post-ablation datasets). Blur metric, normalized mean squared error and peak signal to noise ratio were used as metrics to analyze the quality of the reconstructed images, Quantification of the extent of LGE was performed on the undersampled images and compared with the fully sampled images. Quantification of scar from post-ablation datasets and quantification of fibrosis from pre-ablation datasets showed that acceleration factors up to R~3.5 gave good 3D LGE images of the LA wall, using a 3D TV constraint and constrained SB methods. This corresponds to reducing the scan time by half, compared to currently used GRAPPA methods. Reconstruction of 3D LGE images using the SB method was over 20 times faster than standard gradient descent methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution late gadolinium enhancement imaging with compressed sensing: a single-center clinical study

Background Late gadolinium enhancement (LGE) MRI is the clinical standard for imaging of scar in the left ventricle (LV). It has also been employed for assessing RF ablations in the left atrium (LA). LV LGE imaging is typically performed in 2D. When 3D is utilized, spatial resolution is limited due to prolonged scan time. We have shown that an accelerated imaging technique called LOST with rand...

متن کامل

3D hybrid radial acquisition with compressed sensing for LGE imaging of left atrium: A simulation study

Introduction: Atrial fibrillation currently affects over 7 million people in the U.S. and Europe. Late Gadolinium Enhancement (LGE) imaging offers a means to assess ablation of the left atrium and the pulmonary vein ostia [1, 2]. In order to quantify the extent of scar, images with high resolution in-plane as well as throughplane are required. The standard approach is to acquire LGE images usin...

متن کامل

Improved late gadolinium enhancement imaging of left ventricle with isotropic spatial resolution

Background Recent studies have shown the prognostic value of the infarct border zone of late gadolinium enhancement (LGE) images in patients with myocardial infarction [1]. This border zone has also been associated with ventricular arrhythmia [2,3]. The accuracy of the characterization of this area depends on spatial resolution of the imaging. 3D LGE allows improved spatial resolution, especial...

متن کامل

Self-navigated 3D late gadolinium enhancement imaging of the left atrium

Introduction: Late Gadolinium Enhancement imaging is evolving as a valuable tool for treatment management of atrial fibrillation using radio-frequency ablation [1, 2]. Enhancement in images post-ablation correlates with regions of ablation [1, 2] that can be used to track treatment progress and identify gaps in the ablated regions. In pre-ablation images, enhancement corresponds to fibrosis whi...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 34 7  شماره 

صفحات  -

تاریخ انتشار 2016