ATGC database and ATGC-COGs: an updated resource for micro- and macro-evolutionary studies of prokaryotic genomes and protein family annotation

نویسندگان

  • David M. Kristensen
  • Yuri I. Wolf
  • Eugene V. Koonin
چکیده

The Alignable Tight Genomic Clusters (ATGCs) database is a collection of closely related bacterial and archaeal genomes that provides several tools to aid research into evolutionary processes in the microbial world. Each ATGC is a taxonomy-independent cluster of 2 or more completely sequenced genomes that meet the objective criteria of a high degree of local gene order (synteny) and a small number of synonymous substitutions in the protein-coding genes. As such, each ATGC is suited for analysis of microevolutionary variations within a cohesive group of organisms (e.g. species), whereas the entire collection of ATGCs is useful for macroevolutionary studies. The ATGC database includes many forms of pre-computed data, in particular ATGC-COGs (Clusters of Orthologous Genes), multiple sequence alignments, a set of 'index' orthologs representing the most well-conserved members of each ATGC-COG, the phylogenetic tree of the organisms within each ATGC, etc. Although the ATGC database contains several million proteins from thousands of genomes organized into hundreds of clusters (roughly a 4-fold increase since the last version of the ATGC database), it is now built with completely automated methods and will be regularly updated following new releases of the NCBI RefSeq database. The ATGC database is hosted jointly at the University of Iowa at dmk-brain.ecn.uiowa.edu/ATGC/ and the NCBI at ftp.ncbi.nlm.nih.gov/pub/kristensen/ATGC/atgc_home.html.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes

The database of Alignable Tight Genomic Clusters (ATGCs) consists of closely related genomes of archaea and bacteria, and is a resource for research into prokaryotic microevolution. Construction of a data set with appropriate characteristics is a major hurdle for this type of studies. With the current rate of genome sequencing, it is difficult to follow the progress of the field and to determin...

متن کامل

The Clusters of Orthologous Groups (COGs) Database: Phylogenetic Classification of Proteins from Complete Genomes

The protein database of Clusters of Orthologous Groups (COGs) is an attempt to phylogenetically classify the complete complement of proteins (both predicted and characterized) encoded by complete genomes. Each COG is a group of three or more proteins that are inferred to be orthologs, i.e., they are direct evolutionary counterparts. The current release of the COGs database consists of 4,873 COG...

متن کامل

Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation

Viruses are the most abundant and diverse biological entities on earth, and while most of this diversity remains completely unexplored, advances in genome sequencing have provided unprecedented glimpses into the virosphere. The Prokaryotic Virus Orthologous Groups (pVOGs, formerly called Phage Orthologous Groups, POGs) resource has aided in this task over the past decade by using automated meth...

متن کامل

The COG database: a tool for genome-scale analysis of protein functions and evolution

Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www. ncbi.nlm. nih.gov/COG...

متن کامل

Expanded microbial genome coverage and improved protein family annotation in the COG database

Microbial genome sequencing projects produce numerous sequences of deduced proteins, only a small fraction of which have been or will ever be studied experimentally. This leaves sequence analysis as the only feasible way to annotate these proteins and assign to them tentative functions. The Clusters of Orthologous Groups of proteins (COGs) database (http://www.ncbi.nlm.nih.gov/COG/), first crea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2017