Mesenchymal stem cell-like properties of CD133+ glioblastoma initiating cells

نویسندگان

  • Lorena Favaro Pavon
  • Tatiana Tais Sibov
  • Daniela Mara de Oliveira
  • Luciana C. Marti
  • Francisco Romero Cabral
  • Jean Gabriel de Souza
  • Pamela Boufleur
  • Suzana M.F. Malheiros
  • Manuel A. de Paiva Neto
  • Edgard Ferreira da Cruz
  • Ana Marisa Chudzinski-Tavassi
  • Sérgio Cavalheiro
چکیده

Glioblastoma is composed of dividing tumor cells, stromal cells and tumor initiating CD133+ cells. Recent reports have discussed the origin of the glioblastoma CD133+ cells and their function in the tumor microenvironment. The present work sought to investigate the multipotent and mesenchymal properties of primary highly purified human CD133+ glioblastoma-initiating cells. To accomplish this aim, we used the following approaches: i) generation of tumor subspheres of CD133+ selected cells from primary cell cultures of glioblastoma; ii) analysis of the expression of pluripotency stem cell markers and mesenchymal stem cell (MSC) markers in the CD133+ glioblastoma-initiating cells; iii) side-by-side ultrastructural characterization of the CD133+ glioblastoma cells, MSC and CD133+ hematopoietic stem cells isolated from human umbilical cord blood (UCB); iv) assessment of adipogenic differentiation of CD133+ glioblastoma cells to test their MSC-like in vitro differentiation ability; and v) use of an orthotopic glioblastoma xenograft model in the absence of immune suppression. We found that the CD133+ glioblastoma cells expressed both the pluripotency stem cell markers (Nanog, Mush-1 and SSEA-3) and MSC markers. In addition, the CD133+ cells were able to differentiate into adipocyte-like cells. Transmission electron microscopy (TEM) demonstrated that the CD133+ glioblastoma-initiating cells had ultrastructural features similar to those of undifferentiated MSCs. In addition, when administered in vivo to non-immunocompromised animals, the CD133+ cells were also able to mimic the phenotype of the original patient's tumor. In summary, we showed that the CD133+ glioblastoma cells express molecular signatures of MSCs, neural stem cells and pluripotent stem cells, thus possibly enabling differentiation into both neural and mesodermal cell types.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aggressive invasion is observed in CD133−/A2B5+ glioma-initiating cells

Glioblastoma multiforme is the most common and fatal primary brain tumor in adults. Aggressive invasion of glioblastoma cells into brain tissue often limits complete surgical resection and contributes to therapeutic resistance. The cell surface marker, CD133, has been identified as a putative stem cell marker in normal and malignant brain tissues; CD133-/A2B5+ cells exhibit neural stem-like cel...

متن کامل

Primary glioblastomas express mesenchymal stem-like properties.

Glioblastoma is the most common and aggressive primary brain cancer. Recent isolation and characterization of brain tumor-initiating cells supports the concept that transformed neural stem cells may seed glioblastoma. We previously identified a wide array of mesenchymal tissue transcripts overexpressed in a broad set of primary glioblastoma (de novo) tumors but not in secondary glioblastoma (de...

متن کامل

Human umbilical cord blood-derived mesenchymal stem cells and their effect on gliomas.

Glioblastoma in adults and pediatric brain tumors have become one of the favored vehicles for cancer stem cell hypothesis. There is compelling evidence that human glioblastoma is a heterogeneous tumor composed of lineage committed tumor cells and a subpopulation of cancer stem cells. These tumor-initiating stem cells have a high tumorogenic potential and low proliferationrate. [1],[2],[3],[4],[...

متن کامل

Coexpression analysis of CD133 and CD44 identifies Proneural and Mesenchymal subtypes of glioblastoma multiforme

Accumulating evidence suggests that the stem cell markers CD133 and CD44 indicate molecular subtype in Glioblastoma Multiforme (GBM). Gene coexpression analysis of The Cancer Genome Atlas GBM dataset was undertaken to compare markers of the Glioblastoma Stem-Progenitor Cell (GSPC) phenotype. Pearson correlation identified genes coexpressed with stem cell markers, which were then used to build a...

متن کامل

Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein

In this manuscript, we use genetic data to provide a three-faceted analysis on the links between molecular subclasses of glioblastoma, epithelial-to-mesenchymal transition (EMT) and CD133 cell surface protein. The contribution of this paper is three-fold: First, we use a newly identified signature for epithelial-to-mesenchymal transition in human mammary epithelial cells, and demonstrate that g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016