The cancer-free phenotype in trichothiodystrophy is unrelated to its repair defect.
نویسندگان
چکیده
The DNA repair-deficient genetic disorders xeroderma pigmentosum (XP) and trichothiodystrophy (TTD) can both result from mutations in the XPD gene, the sites of the mutations differing between the two disorders. The hallmarks of XP are multiple pigmentation changes in the skin and a greatly elevated frequency of skin cancers, characteristics that are not seen in TTD. XP-D and most TTD patients have reduced levels of DNA repair, but some recent reports have suggested that the repair deficiencies in TTD cells are milder than in XP-D cells. We reported recently that inhibition of intracellular adhesion molecule-1 (ICAM-1) expression by UVB irradiation was similar in normal and TTD cells but increased in XP-D cells, suggesting a correlation between ICAM-1 inhibition and cancer proneness. In the first part of the current work, we have extended these studies and found several other examples, including XP-G and Cockayne syndrome cells, in which increased ICAM-1 inhibition correlated with cancer proneness. However, we also discovered that a subset of TTD cells, in which arg112 in the NH2-terminal region of the XPD protein is mutated to histidine, had an ICAM-1 response similar to that of XP-D cells. In the second part of the work, we have shown that TTD cells with this specific NH2-terminal mutation are more sensitive to UV irradiation than other TTDs, most of which are mutated in the COOH-terminal region, and are indistinguishable from XP-D cells in cell killing, incision breaks, and repair of cyclobutane pyrimidine dimers. Because the clinical phenotypes of these patients do not obviously differ from those of TTDs with mutations at other sites, we conclude that the lack of skin abnormalities in TTD is independent of the defective cellular responses to UV. It is likely to result from a transcriptional defect, which prevents the skin abnormalities from being expressed.
منابع مشابه
Comparative study of chemo-sensitivity expressed as micronuclei in lymphocytes of breast cancer patients, their unaffected first degree relatives and normal controls as a possible prognostic marker
Background: Genomic instability is one of primary causes for malignant cell transformation. In this study induced genomic instability expressed as micronuclei in breast cancer (BC) patients with different stages of the disease compared with their unaffected first degree relatives (FDR) and normal unrelated controls was investigated. Materials and Methods: The background and net micronucleus fre...
متن کاملTrichothiodystrophy view from the molecular basis of DNA repair/transcription factor TFIIH.
Trichothiodystrophy (TTD) is a rare autosomal recessive disorder characterized by brittle hair and also associated with various systemic symptoms. Approximately half of TTD patients exhibit photosensitivity, resulting from the defect in the nucleotide excision repair. Photosensitive TTD is due to mutations in three genes encoding XPB, XPD and p8/TTDA subunits of the DNA repair/transcription fac...
متن کاملDisruption of the mouse xeroderma pigmentosum group D DNA repair/basal transcription gene results in preimplantation lethality.
The xeroderma pigmentosum (XP) group D (XPD) gene encodes a DNA helicase that is a subunit of the transcription factor IIH complex, involved both in nucleotide excision repair of UV-induced DNA damage and in basal transcription initiation. Point mutations in the XPD gene lead either to the cancer-prone repair syndrome XP, sometimes in combination with a second repair condition; Cockayne syndrom...
متن کاملTissue specific mutagenic and carcinogenic responses in NER defective mouse models.
Several mouse models with defects in genes encoding components of the nucleotide excision repair (NER) pathway have been developed. In NER two different sub-pathways are known, i.e. transcription-coupled repair (TC-NER) and global-genome repair (GG-NER). A defect in one particular NER protein can lead to a (partial) defect in GG-NER, TC-NER or both. GG-NER defects in mice predispose to cancer, ...
متن کاملDifferent removal of ultraviolet photoproducts in genetically related xeroderma pigmentosum and trichothiodystrophy diseases.
To understand the heterogeneity in genetic predisposition to skin cancer in different nucleotide excision repair-deficient human syndromes, we studied repair of cyclobutane pyrimidine dimers (CPDs) and of pyrimidine(6-4)pyrimidone (6-4PP) photoproducts in cells from trichothiodystrophy (TTD) patients. TTD is not associated with increased incidence of skin cancer, although 50% of the patients ar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 60 2 شماره
صفحات -
تاریخ انتشار 2000