Human Intention Recognition in Flexible Robotized Warehouses based on Markov Decision Processes

نویسندگان

  • Tomislav Petkovi'c
  • Ivan Markovi'c
  • Ivan Petrovi'c
چکیده

The rapid growth of e-commerce increases the need for larger warehouses and their automation, thus using robots as assistants to human workers becomes a priority. In order to operate efficiently and safely, robot assistants or the supervising system should recognize human intentions. Theory of mind (ToM) is an intuitive conception of other agents’ mental state, i.e., beliefs and desires, and how they cause behavior. In this paper we present a ToM-based algorithm for human intention recognition in flexible robotized warehouses. We have placed the warehouse worker in a simulated 2D environment with three potential goals. We observe agent’s actions and validate them with respect to the goal locations using a Markov decision process framework. Those observations are then processed by the proposed hidden Markov model framework which estimated agent’s desires. We demonstrate that the proposed framework predicts human warehouse worker’s desires in an intuitive manner and in the end we discuss the simulation results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CAPIR: Collaborative Action Planning with Intention Recognition

We apply decision theoretic techniques to construct nonplayer characters that are able to assist a human player in collaborative games. The method is based on solving Markov decision processes, which can be difficult when the game state is described by many variables. To scale to more complex games, the method allows decomposition of a game task into subtasks, each of which can be modelled by a...

متن کامل

3D Hand Motion Evaluation Using HMM

Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Intention Inference and Decision Making with Hierarchical Gaussian Process Dynamics Model

Anticipation is crucial for fluent human-robot interaction, which allows a robot to independently coordinate its actions with human beings in joint activities. An anticipatory robot relies on a predictive model of its human partners, and selects its own action according to the model’s predictions. Intention inference and decision making are key elements towards such anticipatory robots. In this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017