The Estimation of Regional Crop Yield Using Ensemble-Based Four-Dimensional Variational Data Assimilation

نویسندگان

  • Zhiwei Jiang
  • Zhongxin Chen
  • Jin Chen
  • Jianqiang Ren
  • Zongnan Li
  • Liang Sun
چکیده

To improve crop model performance for regional crop yield estimates, a new four-dimensional variational algorithm (POD4DVar) merging the Monte Carlo and proper orthogonal decomposition techniques was introduced to develop a data assimilation strategy using the Crop Environment Resource Synthesis (CERES)-Wheat model. Two winter wheat yield estimation procedures were conducted on a field plot and regional scale to test the feasibility and potential of the POD4DVar-based strategy. Winter wheat yield forecasts for the field plots showed a coefficient of determination (R) of 0.73, a root mean square error (RMSE) of 319 kg/ha, and a relative error (RE) of 3.49%. An acceptable yield at the regional scale was estimated with an R of 0.997, RMSE of 7346 tons, and RE of 3.81%. The POD4DVar-based strategy was more accurate and efficient than the EnKF-based strategy. In addition to crop yield, other critical crop variables such as the biomass, harvest index, evapotranspiration, and soil organic carbon may also be estimated. The present study thus introduces a promising approach for operationally monitoring regional crop growth and predicting yield. Successful application of this assimilation model at regional scales must focus on uncertainties derived from the crop model, model inputs, data assimilation algorithm, and assimilated observations. OPEN ACCESS Remote Sens. 2014, 6 2665

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Winter Wheat Yield Estimation from the CERES-Wheat Model to Assimilate Leaf Area Index with Different Assimilation Methods and Spatio-Temporal Scales

To improve the accuracy of winter wheat yield estimation, the Crop Environment Resource Synthesis for Wheat (CERES-Wheat) model with an assimilation strategy was performed by assimilating measured or remotely-sensed leaf area index (LAI) values. The performances of the crop model for two different assimilation methods were compared by employing particle filters (PF) and the proper orthogonal de...

متن کامل

Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST-ACRM model with Ensemble Kalman Filter

Regional crop yield prediction is a significant component of national food security assessment and food policy making. The crop growth model based on field scale is limited when it is extrapolated to regional scale to estimate crop yield due to the uncertainty of the input parameters. The data assimilation method which combines crop growth model and remotely sensed data has been proven to be th...

متن کامل

Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation

Leaf area index (LAI) is a major indicator for crop growth monitoring and yield estimation. Data assimilation as an effective tool for crop LAI estimation fully considers the properties of actual observations and physical model simulations. In this work, we present a new data assimilation scheme, introducing a very fast simulated annealing (VFSA) optimization algorithm into the process of crop ...

متن کامل

Assimilating MODIS-LAI into Crop Growth Model with EnKF to Predict Regional Crop Yield

Regional crop yield prediction is a vital component of national food security assessment. Data assimilation method which combines crop growth model and remotely sensed data has been proven the most potential method in regional crop production estimation. This paper takes Hengshui district as study area, WOFOST as crop model, MODIS-LAI as observation data to test and verify the efficiency of EnK...

متن کامل

Ensemble-based atmospheric data assimilation

Ensemble-based data assimilation techniques are being explored as possible alternatives to current operational analysis techniques such as threeor four-dimensional variational assimilation. Ensemble-based assimilation techniques utilise an ensemble of parallel data assimilation and forecast cycles. The background-error covariances are estimated using the forecast ensemble and are used to produc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014