Disparity in neurotransmitter release probability among competing inputs during neuromuscular synapse elimination.
نویسندگان
چکیده
Competition among the several motor axons transiently innervating neonatal muscle fibers results in an increasing disparity in the quantal content and synaptic territory of each competitor, culminating in the permanent loss of all but one axon from neuromuscular junctions. We asked whether differences in the probability of neurotransmitter release also contribute to the increasing disparity in quantal content among competing inputs, and when in the process of competition changes in release probability become apparent. To address these questions, intracellular recordings were made from dually innervated neonatal mouse soleus muscle fibers, and quantal content and paired-pulse facilitation were evaluated for each input. At short interpulse intervals, paired-pulse facilitation was significantly higher for the weaker input with the smaller quantal content than the stronger input with the larger quantal content. Because neurotransmitter release probability across all release sites is inversely related to the extent of facilitation observed after paired-pulse stimulation, this result suggests that release probability is lower for weak compared with strong inputs innervating the same junction. A disparity in the probability of neurotransmitter release thus contributes to the disparity in quantal content that occurs during synaptic competition. Together, this work suggests that an input incapable of sustaining a high release probability may be at a competitive disadvantage for synaptic maintenance.
منابع مشابه
Synaptic plasticity at developing neuromuscular junctions: role of the timing of spike activity in the competing inputs
The development of the nervous system is based on genetic as well as epigenetic mechanisms: among the latter a prominent role is played both by chemical factors (neurotrophins being an important class) and by the electrical impulse activity. The result of these developmental interactions is the complex set of synaptic connections that characterize the adult nervous system. One remarkable aspect...
متن کاملSpike timing plays a key role in synapse elimination at the neuromuscular junction.
Nerve impulse activity produces both developmental and adult plastic changes in neural networks. For development, however, its precise role and the mechanisms involved remain elusive. Using the classic model of synapse competition and elimination at newly formed neuromuscular junctions, we asked whether spike timing is the instructive signal at inputs competing for synaptic space. Using a rat s...
متن کاملThe mechanism for prejunctional enhancement of neuromuscular transmission by ethanol in the mouse.
Ethanol has been shown to have both presynaptic and postsynaptic effects on synaptic transmission. However, the mechanisms by which ethanol affects evoked neurotransmitter release have not been studied at the mouse neuromuscular junction, a synapse at which binomial analysis of neurotransmitter release and measurements of prejunctional ionic currents can be made. Ethanol (400 mM) increased neur...
متن کاملA novel synaptic plasticity rule explains homeostasis of neuromuscular transmission
Excitability differs among muscle fibers and undergoes continuous changes during development and growth, yet the neuromuscular synapse maintains a remarkable fidelity of execution. Here we show in two evolutionarily distant vertebrates (Xenopus laevis cell culture and mouse nerve-muscle ex-vivo) that the skeletal muscle cell constantly senses, through two identified calcium signals, synaptic ev...
متن کاملThe Drosophila NSF protein, dNSF1, plays a similar role at neuromuscular and some central synapses.
The N-ethylmaleimide sensitive fusion protein (NSF) was originally identified as a cytosolic factor required for constitutive vesicular transport and later implicated in synaptic vesicle trafficking as well. Our previous work at neuromuscular synapses in the temperature-sensitive NSF mutant, comatose (comt), has shown that the comt gene product, dNSF1, functions after synaptic vesicle docking i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 20 23 شماره
صفحات -
تاریخ انتشار 2000