Sparse Texture Representation Using Affine-Invariant Neighborhoods

ثبت نشده
چکیده

This paper proposes a novel texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and non-rigid deformations. Unlike many existing feature extraction methods, which treat the neighborhood of every pixel as a candidate texture element, the proposed algorithm works by selecting a sparse set of affine-invariant local patches. This spatial selection process, besides providing greater computational efficiency and reducing redundancy in texton dictionaries, permits the computation of characteristic scale and neighborhood shape for every texture element. Shape information is used to determine the right support region for computing intensity-based descriptors. When affine invariance is not required, shape can itself become a discriminative feature. The proposed texture representation is evaluated in retrieval and classification tasks using the entire Brodatz database and a collection of photographs of textured surfaces featuring viewpoint changes and non-rigid deformations, as well as variations in illumination and appearance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Texture Representation Using Affine-Invariant Regions

This paper introduces a texture representation suitable for recognizing images of textured surfaces under a wide range of transformations, including viewpoint changes and nonrigid deformations. At the feature extraction stage, a sparse set of affine-invariant local patches is extracted from the image. This spatial selection process permits the computation of characteristic scale and neighborhoo...

متن کامل

Affine invariant texture signatures

In this paper, we develop a new approach for texture classification independent of affine transforms. Based on spectral representation of texture images under affine transform, anisotropic scale invariant signatures of orientation spectrum distribution are extracted. Peaks distribution vector (PDV) obtained on the distribution of these signatures captures texture properties invariant to affine ...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Affine Invariant Texture Analysis Based on Structural Properties

This paper presents a new texture analysis method based on structural properties. The texture features extracted using this algorithm are invariant to affine transform (including rotation, translation, scaling, and skewing). Affine invariant structural properties are derived based on texel areas. An area-ratio map utilizing these properties is introduced to characterize texture images. Histogra...

متن کامل

The local binary pattern approach to texture analysis - extensions and applications

This thesis presents extensions to the local binary pattern (LBP) texture analysis operator. The operator is defined as a gray-scale invariant texture measure, derived from a general definition of texture in a local neighborhood. It is made invariant against the rotation of the image domain, and supplemented with a rotation invariant measure of local contrast. The LBP is proposed as a unifying ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003