Parabolic Variational Problems and Regularity in Metric Spaces

نویسنده

  • J. KINNUNEN
چکیده

In this paper we study variational problems related to the heat equation in metric spaces equipped with a doubling measure and supporting a Poincaré inequality. We give a definition of parabolic De Giorgi classes and compare this notion with that of parabolic quasiminimizers. The main result, after proving the local boundedness, is the proof of a scale-invariant Harnack inequality for functions in parabolic De Giorgi classes. MSC: 30L99, 31E05, 35K05, 35K99, 49N60

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Regularity for parabolic quasiminimizers in metric measure spaces

Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Mathias Masson Name of the doctoral dissertation Regularity for parabolic quasiminimizers in metric measure spaces Publisher School of Science Unit Department of Mathematics and Systems Analysis Series Aalto University publication series DOCTORAL DISSERTATIONS 89/2013 Field of research Mathematical analysis Manuscript submitte...

متن کامل

On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs

This paper mainly deals with the study of directional versions of metric regularity and metric subregularity for general set-valued mappings between infinite-dimensional spaces. Using advanced techniques of variational analysis and generalized differentiation, we derive necessary and sufficient conditions, which extend even the known result for to the conventional metric regularity. Finally, th...

متن کامل

Enhanced metric regularity and Lipschitzian properties of variational systems

This paper mainly concerns the study of a large class of variational systems governed by parametric generalized equations, which encompass variational and hemivariational inequalities, complementarity problems, first-order optimality conditions, and other optimization-related models important for optimization theory and applications. An efficient approach to these issues has been developed in o...

متن کامل

On the Monotone Mappings in CAT(0) Spaces

In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods  by combining the resolvent method with Halpern's iterative method and viscosity approximation method for  finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations  in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011