Activin-betaA signaling is required for zebrafish fin regeneration.

نویسندگان

  • Anna Jaźwińska
  • Rossen Badakov
  • Mark T Keating
چکیده

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal cells progressively leave the zone and undergo the differentiation that results in the replacement of the amputated structures. Little is known about the mechanisms triggering regenerative events after injury. The zebrafish caudal fin provides a valuable model to study the mechanisms of regeneration. Zebrafish blastemal cells express specific genes, such as the homeobox-containing transcription factors msxB and msxC, and secreted signal FGF20a. In this study, we set out to identify signals that are transcriptionally upregulated after fin amputation and before blastema formation. Accordingly, a gene encoding a TGFbeta-related ligand, activin-betaA (actbetaA), was found to be strongly induced within 6 hr after fin amputation at the wound margin, and later in the blastema. Inhibition of Activin signaling through two specific chemical inhibitors, SB431542 and SB505124, lead to the early and complete block of regeneration. The morpholino knockdown of actbetaA and its receptor alk4 impaired the progression of regeneration. Closer examination of the phenotype revealed that Activin signaling is necessary for cell migration during wound healing and blastemal proliferation. These findings reveal a role of Activin-betaA signaling in the tissue repair after injury and subsequent outgrowth formation during epigenetic regeneration of the vertebrate appendage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activin-βA Signaling Is Required for Zebrafish Fin Regeneration

Vertebrate limb regeneration occurs in anamniotes such as newts, salamanders, and zebrafish [1–4]. After appendage amputation, the resection site is covered by a wound epidermis capping the underlying mature tissues of the stump from which the blastema emerges. The blastema is a mass of progenitor cells that constitute an apical growth zone. During outgrowth formation, the proximal blastemal ce...

متن کامل

In vivo Electroporation of Morpholinos into the Regenerating Adult Zebrafish Tail Fin

Certain species of urodeles and teleost fish can regenerate their tissues. Zebrafish have become a widely used model to study the spontaneous regeneration of adult tissues, such as the heart, retina, spinal cord, optic nerve, sensory hair cells, and fins. The zebrafish fin is a relatively simple appendage that is easily manipulated to study multiple stages in epimorphic regeneration. Classicall...

متن کامل

Spatial expression patterns of activin and its signaling system in the zebrafish ovarian follicle: evidence for paracrine action of activin on the oocytes.

We have previously demonstrated that activin is likely an ovarian mediator of pituitary gonadotropin(s) and local epidermal growth factor in their stimulating oocyte maturation and maturational competence in the zebrafish. However, the downstream events controlled by activin remain unknown. One possible mechanism is that activin may directly work on the oocytes to promote the development of ooc...

متن کامل

Impaired caudal fin‐fold regeneration in zebrafish deficient for the tumor suppressor Pten

Zebrafish are able to completely regrow their caudal fin-folds after amputation. Following injury, wound healing occurs, followed by the formation of a blastema, which produces cells to replace the lost tissue in the final phase of regenerative outgrowth. Here we show that, surprisingly, the phosphatase and tumor suppressor Pten, an antagonist of phosphoinositide-3-kinase (PI3K) signaling, is r...

متن کامل

TNF signaling and macrophages govern fin regeneration in zebrafish larvae

Macrophages are essential for appendage regeneration after amputation in regenerative species. The molecular mechanisms through which macrophages orchestrate blastema formation and regeneration are still unclear. Here, we use the genetically tractable and transparent zebrafish larvae to study the functions of polarized macrophage subsets during caudal fin regeneration. After caudal fin amputati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current biology : CB

دوره 17 16  شماره 

صفحات  -

تاریخ انتشار 2007