Preconditioned Eigensolvers for Large-scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. I. Conjugate Gradient Methods

نویسندگان

  • Daniel B. Szyld
  • Fei Xue
  • DANIEL B. SZYLD
  • FEI XUE
چکیده

Preconditioned conjugate gradient (PCG) methods have been widely used for computing a few extreme eigenvalues of large-scale linear Hermitian eigenproblems. In this paper, we study PCG methods to compute extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG method, including its global and asymptotic convergence. We propose several variants of single-vector and block PCG methods with deflation for computing multiple eigenvalues, and compare them in arithmetic and memory cost. Variable indefinite preconditioning is shown to be effective to accelerate convergence when some desired eigenvalues are not close to the lowest or highest one. Efficiency of these algorithms is illustrated by numerical experiments. AMS subject classifications. 65F15, 65F10, 65F50, 15A18, 15A22.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned eigensolvers for large-scale nonlinear Hermitian eigenproblems with variational characterizations. I. Extreme eigenvalues

Efficient computation of extreme eigenvalues of large-scale linear Hermitian eigenproblems can be achieved by preconditioned conjugate gradient (PCG) methods. In this paper, we study PCG methods for computing extreme eigenvalues of nonlinear Hermitian eigenproblems of the form T (λ)v = 0 that admit a nonlinear variational principle. We investigate some theoretical properties of a basic CG metho...

متن کامل

Preconditioned Eigensolvers for Large-Scale Nonlinear Hermitian Eigenproblems with Variational Characterizations. II. Interior Eigenvalues

We consider the solution of large-scale nonlinear algebraic Hermitian eigenproblems of the form T (λ)v = 0 that admit a variational characterization of eigenvalues. These problems arise in a variety of applications and are generalizations of linear Hermitian eigenproblems Av=λBv. In this paper, we propose a Preconditioned Locally Minimal Residual (PLMR) method for efficiently computing interior...

متن کامل

On preconditioned eigensolvers and Invert-Lanczos processes

This paper deals with the convergence analysis of various preconditioned iterations to compute the smallest eigenvalue of a discretized self-adjoint and elliptic partial differential operator. For these eigenproblems several preconditioned iterative solvers are known, but unfortunately, the convergence theory for some of these solvers is not very well understood. The aim is to show that precond...

متن کامل

Nearly optimal preconditioned methods for hermitian eigenproblems under limited memory . Part I : Seeking one eigenvalue Andreas Stathopoulos July 2005

Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...

متن کامل

Nearly Optimal Preconditioned Methods for Hermitian Eigenproblems under Limited Memory. Part I: Seeking One Eigenvalue

Large, sparse, Hermitian eigenvalue problems are still some of the most computationally challenging tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem from the nonlinear perspective that helps us develop two nearly optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014