Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models

نویسندگان

  • Gabor Maasz
  • Zita Zrinyi
  • Dora Reglodi
  • Dora Petrovics
  • Adam Rivnyak
  • Tibor Kiss
  • Adel Jungling
  • Andrea Tamas
  • Zsolt Pirger
چکیده

Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroprotective roles of pituitary adenylate cyclase-activating polypeptide in neurodegenerative diseases

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic bioactive peptide that was first isolated from an ovine hypothalamus in 1989. PACAP belongs to the secretin/glucagon/vasoactive intestinal polypeptide (VIP) superfamily. PACAP is widely distributed in the central and peripheral nervous systems and acts as a neurotransmitter, neuromodulator, and neurotrophic factor via t...

متن کامل

Pituitary Adenylate Cyclase Activating Polypeptide Modulates Catecholamine Storage and Exocytosis in PC12 Cells

A number of efforts have been made to understand how pituitary adenylate cyclase activating polypeptide (PACAP) functions as a neurotrophic and neuroprotective factor in Parkinson's disease (PD). Recently its effects on neurotransmission and underlying mechanisms have generated interest. In the present study, we investigate the effects of PACAP on catecholamine storage and secretion in PC12 cel...

متن کامل

Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and PACAP4-6 are neuroprotective through inhibition of NADPH oxidase: potent regulators of microglia-mediated oxidative stress.

Microglial activation is implicated in the progressive nature of numerous neurodegenerative diseases, including Parkinson's disease. Using primary rat mesencephalic neuron-glia cultures, we found that pituitary adenylate cyclase-activating polypeptide (PACAP) 38, PACAP27, and its internal peptide, Gly-Ile-Phe (GIF; PACAP4-6), are neuroprotective at 10(-13) M against lipopolysaccharide (LPS)-ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017