The evolution of Jen3 proteins and their role in dicarboxylic acid transport in Yarrowia
نویسندگان
چکیده
Jen proteins in yeast are involved in the uptake of mono/dicarboxylic acids. The Jen1 subfamily transports lactate and pyruvate, while the Jen2 subfamily transports fumarate, malate, and succinate. Yarrowia lipolytica has six JEN genes: YALI0B19470g, YALI0C15488g, YALI0C21406g, YALI0D20108g, YALI0D24607g, and YALI0E32901g. Through phylogenetic analyses, we found that these genes represent a new subfamily, Jen3 and that these three Jen subfamilies derivate from three putative ancestral genes. Reverse transcription-PCR. revealed that only four YLJEN genes are expressed and they are upregulated in the presence of lactate, pyruvate, fumarate, malate, and/or succinate, suggesting that they are able to transport these substrates. Analysis of deletion mutant strains revealed that Jen3 subfamily proteins transport fumarate, malate, and succinate. We found evidence that YALI0C15488 encodes the main transporter because its deletion was sufficient to strongly reduce or suppress growth in media containing fumarate, malate, or succinate. It appears that the other YLJEN genes play a minor role, with the exception of YALI0E32901g, which is important for malate uptake. However, the overexpression of each YLJEN gene in the sextuple-deletion mutant strain ΔYLjen1-6 revealed that all six genes are functional and have evolved to transport different substrates with varying degrees of efficacy. In addition, we found that YALI0E32901p transported succinate more efficiently in the presence of lactate or fumarate.
منابع مشابه
Microwave Assisted Selective Synthesis of four Chromanones Via Biscyclization Method in the Presence of Polyphosphoric Acid and Crystal Structure Determination of Their Dicarboxylic Acids
Microwave irradiation is used in the synthesis of four tricyclic chromanones 11-14. The chromanone 14 and 12 are selectively formed thermally and under microwave in the presence of polyphosphoric acid (PPA) from the same dicarboxylic acid 9, respectively. The crystal structures of the two diacids are also reported. The corresponding ortho and meta isomers of diacids crystallize in the space...
متن کاملCombinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids
This proof-of-concept study establishes Yarrowia lipolytica (Y. lipolytica) as a whole cell factory for the de novo production of long chain dicarboxylic acid (LCDCA-16 and 18) using glycerol as the sole source of carbon. Modification of the fatty acid metabolism pathway enabled creating a pool of fatty acids in a β-oxidation deficient strain. We then selectively upregulated the native fatty ac...
متن کاملThe Effect of Low Volume High Intensity Interval Training on Sarcolemmal Content of Fatty Acid Transport Proteins (FAT/CD36 and FABPpm) in Young Men
High-intensity interval training (HIT) induces skeletal muscle metabolic and performance adaptations that resemble traditional endurance training despite a low total exercise volume. On the other hand, fatty acid oxidation is increases in skeletal muscle with endurance training. This process is regulated in several sites, including the transport of fatty acids across the plasma membrane. The...
متن کاملSynthesis and crystal structure compound Adeninium Bis(pyridine-2,6-dicarboxylate) Chromate(III) pyridine-2,6-dicarboxylic acid tetra hydrate
A new supramolecular compound of adeninium bis(pyridine-2,6-dicarboxylate) Chromate(III) pyridine-2,6-dicarboxylic acid tetrahydrate (AdH+)[Cr(pydc)2](H2pydc).4H2O (1) (where Ad and H2pydc are adenine and pyridine-2,6-dicarboxylic acid, respectively) was synthesized via proton transfer method and its structure was determined using single crystal X-ray diffraction technique. This compound crysta...
متن کاملاثر تیتانیم بر جذب اسید استئاریک در آنتروسیتهای EGS موش صحرایی
Background and Objective: An everted intestinal sac (EGS) technique has been used to extensively estimate the transport and intestinal absorption in rats. Therefore, a number of factors such as pH and the nature of solvent may play an important role in fatty acid uptake by entrocytes. There are reports indicating that fatty acid transport is affected by many biochemical parameters including tra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015