On the existence of three solutions for the Dirichlet problem on the Sierpinski gasket
نویسندگان
چکیده
We apply a recently obtained three-critical-point theorem of B. Ricceri to prove the existence of at least three solutions of certain two-parameter Dirichlet problems defined on the Sierpinski gasket. We also show the existence of at least three nonzero solutions of certain perturbed two-parameter Dirichlet problems on the Sierpinski gasket, using both the mountain pass theorem of Ambrosetti and Rabinowitz and that of Pucci and Serrin. © 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
Existence of three solutions for a class of quasilinear elliptic systems involving the $p(x)$-Laplace operator
The aim of this paper is to obtain three weak solutions for the Dirichlet quasilinear elliptic systems on a bonded domain. Our technical approach is based on the general three critical points theorem obtained by Ricceri.
متن کاملExistence Results for a Dirichlet Quasilinear Elliptic Problem
In this paper, existence results of positive classical solutions for a class of second-order differential equations with the nonlinearity dependent on the derivative are established. The approach is based on variational methods.
متن کاملDirichlet Forms on the Sierpiński Gasket
We study not necessarily self-similar Dirichlet forms on the Sierpiński gasket that can be described as limits of compatible resistance networks on the sequence of graphs approximating the gasket. We describe the compatibility conditions in detail, and we also present an alternative description, based on just 3 conductance values and the 3-dimensional space of harmonic functions. In addition, w...
متن کاملA note on elliptic problems on the Sierpinski gasket
Using a method that goes back to J. Saint Raymond, we prove the existence of infinitely many weak solutions of certain nonlinear elliptic problems defined on the SG. Mathematics Subject Classification (2010): 35J20, 28A80, 35J25, 35J60, 47J30, 49J52.
متن کاملA VARIATIONAL APPROACH TO THE EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DIFFERENCE EQUATIONS
The existence of infinitely many solutions for an anisotropic discrete non-linear problem with variable exponent according to p(k)–Laplacian operator with Dirichlet boundary value condition, under appropriate behaviors of the non-linear term, is investigated. The technical approach is based on a local minimum theorem for differentiable functionals due to Ricceri. We point out a theorem as a spe...
متن کامل