Single-Molecule Imaging Reveals that Small Amyloid-β1–42 Oligomers Interact with the Cellular Prion Protein (PrPC)
نویسندگان
چکیده
Oligomers of the amyloid-β peptide (Aβ) play a central role in the pathogenesis of Alzheimer's disease and have been suggested to induce neurotoxicity by binding to a plethora of cell-surface receptors. However, the heterogeneous mixtures of oligomers of varying sizes and conformations formed by Aβ42 have obscured the nature of the oligomeric species that bind to a given receptor. Here, we have used single-molecule imaging to characterize Aβ42 oligomers (oAβ42) and to confirm the controversial interaction of oAβ42 with the cellular prion protein (PrP(C)) on live neuronal cells. Our results show that, at nanomolar concentrations, oAβ42 interacts with PrP(C) and that the species bound to PrP(C) are predominantly small oligomers (dimers and trimers). Single-molecule biophysical studies can thus aid in deciphering the mechanisms that underlie receptor-mediated oAβ-induced neurotoxicity, and ultimately facilitate the discovery of novel inhibitors of these pathways.
منابع مشابه
Trapping the oligomers: new promises in neurosciences
Prion diseases are fatal neurodegenerative disorders affecting humans and animals. A critical event in prion diseases is the accumulation in the central nervous system of the abnormally folded PrPSc protein that is the proteaseresistant isoform of a normal cellular protein encoded by the host and called PrPC. According to the “protein only” hypothesis proposed by Prusiner [1], prion agents are ...
متن کاملMonoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell sig...
متن کاملExosomes and the Prion Protein: More than One Truth
Exosomes are involved in the progression of neurodegenerative diseases. The cellular prion protein (PrPC) is highly expressed on exosomes. In neurodegenerative diseases, PrPC has at least two functions: It is the substrate for the generation of pathological prion protein (PrPSc), a key player in the pathophysiology of prion diseases. On the other hand, it binds neurotoxic amyloid-beta (Aß) olig...
متن کاملCountering amyloid polymorphism and drug resistance with minimal drug cocktails.
Several fatal, progressive neurodegenerative diseases, including various prion and prion-like disorders, are connected with the misfolding of specific proteins. These proteins misfold into toxic oligomeric species and a spectrum of distinct self-templating amyloid structures, termed strains. Hence, small molecules that prevent or reverse these protein-misfolding events might have therapeutic ut...
متن کاملDirect Observation of Oligomerization by Single Molecule Fluorescence Reveals a Multistep Aggregation Mechanism for the Yeast Prion Protein Ure2
The self-assembly of polypeptides into amyloid structures is associated with a range of increasingly prevalent neurodegenerative diseases as well as with a select set of functional processes in biology. The phenomenon of self-assembly results in species with dramatically different sizes, from small oligomers to large fibrils; however, the kinetic relationship between these species is challengin...
متن کامل