The Role of Higher Vorticity Moments in a Variational Formulation of Barotropic Flows on a Rotating Sphere

نویسندگان

  • CHJAN C. LIM
  • JUNPING SHI
چکیده

The effects of a higher vorticity moment on a variational problem for barotropic vorticity on a rotating sphere are examined rigorously in the framework of the Direct Method. This variational model differs from previous work on the Barotropic Vorticity Equation (BVE) in relaxing the angular momentum constraint, which then allows us to state and prove theorems that give necessary and sufficient conditions for the existence and stability of constrained energy extremals in the form of super and sub-rotating solid-body steady flows. Relaxation of angular momentum is a necessary step in the modeling of the important tilt instability where the rotational axis of the barotropic atmosphere tilts away from the fixed north-south axis of planetary spin. These conditions on a minimal set of parameters consisting of the planetary spin, relative enstrophy and the fourth vorticity moment, extend the results of previous work and clarify the role of the higher vorticity moments in models of geophysical flows.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ising - Heisenberg model for the coupled barotropic fluid - rotating solid sphere system - condensation of super and sub - rotating barotropic flow states

Exact solutions of a family of Heisenberg-Ising spin-lattice models for a coupled barotropic flow-massive rotating sphere system under microcanon-ical constraint on relative enstrophy is obtained by the method of spherical constraint. Phase transitions representative of Bose-Einstein condensation in which highly ordered super and sub-rotating states self-organize from random initial vorticity s...

متن کامل

Exactly - solvable Ising - Heisenberg model for the coupled barotropic fluid - rotating solid sphere system - condensation of super and sub - rotating barotropic flow states

Exact solutions of a family of Heisenberg-Ising spin-lattice models for a coupled barotropic flow massive rotating sphere system under microcanonical constraint on relative enstrophy is obtained by the method of spherical constraint. Phase transitions representative of Bose-Einstein condensation in which highly ordered super and sub-rotating states self-organize from random initial vorticity st...

متن کامل

Phase transitions to Super-rotation in a Coupled Fluid - Rotating Sphere System

A family of spin-lattice models are derived as convergent finite dimensional approximations to the rest frame kinetic energy of a barotropic fluid coupled to a massive rotating sphere. The angular momentum of the fluid component changes under complex torques that are not resolved and the kinetic energy of the fluid is not a conserved Hamiltonian in these models. These models are used in a stati...

متن کامل

A Lagrangian particle/panel method for the barotropic vorticity equations on a rotating sphere

We present a Lagrangian particle/panel method for geophysical fluid flow described by the barotropic vorticity equations on a rotating sphere. The particles carry vorticity and the panels are used in discretizing the Biot-Savart integral for the velocity. Adaptive panel refinement and a new Lagrangian remeshing scheme are applied to reduce the computational cost and maintain accuracy as the flo...

متن کامل

Exact solutions of a energy-enstrophy theory for the barotropic vorticity equation on a rotating sphere

The equilibrium statistical mechanics of the energy-enstrophy theory for the barotropic vorticity equation is solved exactly in the sense that a explicitly non-Gaussian configurational integral is calculated in closed form. A family of lattice vortex gas models for the barotropic vorticity equation (BVE) is derived and shown to have a well-defined nonextensive continuum limit as the coarse-grai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005