Simulation of RF-MEMS Bio Implantable Sensor for Orthopedic Application
نویسندگان
چکیده
The ability to telemetrically measure strain is important in many aspects of daily life which brings important scientific and technological challenges in many sectors such as civil engineering, aircraft modeling, etc..,. Another unrealized, application area is human medicine and healthcare. MEMS (Micro ElectroMechanical System) technology for Radio Frequency applications has emerged in recent years as a valuable solution to fabricate passive components for the above application with remarkable performance, like very high quality factor and wide capacitance tuning ranges. This paper presents a bio-MEMS strain sensor. The sensor is designed and fabricated in a suspended architecture that increases the quality factor of the sensor with increased resonance frequency shift under load using RF-MEMS approach. As load is applied to stainless steel plate it deforms and modifies the operating frequency shift. When the tissues mineralize, strain in the plate gets decreases thus allowing the observation of healing process. IntelliSuite software is a design and verification tool for MEMS. This software can simulate actual steps in a fabrication process to develop a 3-D model of a device that can be used to perform 3-D simulation. The suspended architecture is designed and simulated using this software. The resonance frequency shift is measured and the results is found satisfactory. KEYWORDS— Bio-MEMS strain sensor, resonance frequency shift, IntelliSuite, Suspended architecture.
منابع مشابه
Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کاملDesign and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation
According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...
متن کاملAccurate Model of Capacitance for MEMS Sensors using Corrugated Diaphragm with Residual Stress
In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stres...
متن کاملModeling of capacitance and sensitivity of a MEMS pressure sensor
In this paper modeling of capacitance and sensitivity for MEMS capacitive pressure sensor is presented. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes versus pressure. Therefore first the diaphragm displacement, capacitance and sensitivity of sensor with square diaphragm have been modeled and then simulated using finite element method (FEM). It can b...
متن کاملBio-implantable passive on-chip RF-MEMS strain sensing resonators for orthopaedic applications
One out of ten bone fractures does not heal properly due to improper load distribution and strain profiles during the healing process. To provide implantable tools for the assessment of bone fractures, we have designed novel, bio-implantable, passive, on-chip, RF-MEMS strain sensors that rely on the resonance frequency shift with mechanical deformation. For this purpose, we modeled, fabricated ...
متن کامل