A note on the minimum cardinality of critical sets of inertias for irreducible zero - nonzero patterns of order 4

نویسنده

  • Ting-Zhu Huang
چکیده

If there exists a nonempty, proper subset S of the set of all (n+ 1)(n+ 2)/2 inertias such that S ⊆ i(A) is sufficient for any n×n zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [Kim, Olesky and Driessche, Critical sets of inertias for matrix patterns, Linear and Multilinear Algebra, 57 (3) (2009) 293-306], identifying all minimal critical sets of inertias for n×n zero-nonzero patterns with n ≥ 3 and the minimum cardinality of such a set are posed as two open questions by Kim, Olesky and Driessche. In this note, the minimum cardinality of all critical sets of inertias for 4× 4 irreducible zero-nonzero patterns is identified. Keywords—Zero-nonzero pattern, Inertia, Critical set of inertias, Inertially arbitrary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Critical Sets of Inertias for Irreducible Zero-nonzero Patterns of Order 3

If there exists a nonempty, proper subset S of the set of all (n + 1)(n + 2)/2 inertias such that S ⊆ i(A) is sufficient for any n × n zero-nonzero pattern A to be inertially arbitrary, then S is called a critical set of inertias for zero-nonzero patterns of order n. If no proper subset of S is a critical set, then S is called a minimal critical set of inertias. In [3], Kim, Olesky and Driessch...

متن کامل

Refined inertially and spectrally arbitrary zero-nonzero patterns

The refined inertia of a matrix is a quadruple specifying its inertia and additionally the number of its eigenvalues equal to zero. Spectral properties, especially the refined inertias, of real matrices with a given zero-nonzero pattern are investigated. It is shown that every zero-nonzero refined inertially arbitrary pattern of order 4 or less is also spectrally arbitrary. Irreducible and redu...

متن کامل

Ela Refined Inertias of Tree Sign Patterns

The refined inertia (n+, n−, nz, 2np) of a real matrix is the ordered 4-tuple that subdivides the number n0 of eigenvalues with zero real part in the inertia (n+, n−, n0) into those that are exactly zero (nz) and those that are nonzero (2np). For n ≥ 2, the set of refined inertias Hn = {(0, n, 0, 0), (0, n − 2, 0, 2), (2, n − 2, 0, 0)} is important for the onset of Hopf bifurcation in dynamical...

متن کامل

Zero-nonzero Patterns for Nilpotent Matrices over Finite Fields

Abstract. Fix a field F. A zero-nonzero pattern A is said to be potentially nilpotent over F if there exists a matrix with entries in F with zero-nonzero pattern A that allows nilpotence. In this paper we initiate an investigation into which zero-nonzero patterns are potentially nilpotent over F, with a special emphasis on the case that F = Zp is a finite field. As part of this investigation, w...

متن کامل

Refined inertias of tree sign-patterns

The refined inertia (n+, n−, nz, 2np) of a real matrix is the ordered 4-tuple that subdivides the number n0 of eigenvalues with zero real part in the inertia (n+, n−, n0) into those that are exactly zero (nz) and those that are nonzero (2np). For n ≥ 2, the set of refined inertias Hn = {(0, n, 0, 0), (0, n − 2, 0, 2), (2, n − 2, 0, 0)} is important for the onset of Hopf bifurcation in dynamical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012