Superoxide, hydrogen peroxide and singlet oxygen in hematoporphyrin derivative-cysteine, -NADH and -light systems.

نویسندگان

  • G R Buettner
  • R D Hall
چکیده

Hematoporphyrin derivative and light in the presence of cysteine or glutathione were found to convert oxygen to superoxide and hydrogen peroxide at pH less than approx. 6.5, while at pH greater than 6.5 no superoxide or hydrogen peroxide production was observed. However, at pH values greater than 6.5 the rate of oxygen consumption increased. This rate paralleled the acid dissociation curve of the cysteine thiol group and is consistent with the chemical quenching of 1O2 by cysteine. The superoxide and hydrogen peroxide formation observed below pH 6.5 appeared not to be related to the singlet oxygen production of hematoporphyrin derivative. In addition, superoxide and hydrogen peroxide production was observed with hematoporphyrin derivative and light in the presence of NADH, both above and below pH 6.5. Direct detection of singlet oxygen luminescence at 1268 nm in the hematoporphyrin derivative-light system (2H2O as solvent) revealed an apparent linear increase in the singlet oxygen emission intensity as the p2H was raised from 7.0 to 10.0. Azide efficiently quenched this observed emission. In addition, at p2H 7.4, 1 mM cysteine resulted in a 40% reduction of the singlet oxygen luminescence, while at p2H 9.4 the signal was quenched by over 95% (under the experimental conditions employed). In total, we interpret these results as consistent with the chemical quenching of 1O2 by the ionized thiol group of cysteine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of hematoporphyrin derivative and light on Y79 retinoblastoma cells in vitro.

Retinoblastoma Y79 cells exposed to a hematoporphyrin derivative and light were examined with regard to the production of intracellular lipid peroxide and morphologic changes, in the presence or absence of oxygen. The intracellular lipid peroxide was related to the dose of hematoporphyrin derivative and the duration of photoradiation, under aerobic conditions. The formation of lipid peroxide wa...

متن کامل

Photoenhancement of lipid peroxidation associated with the generation of reactive oxygen species in hepatic microsomes of hematoporphyrin derivative-treated rats.

Hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative (HPD) undergo rapid enhancement of lipid peroxidation in the presence of solar radiation (approximately 400 nm). Quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, and inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethanol, largely protected against the en...

متن کامل

Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats.

The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by ...

متن کامل

Effect of Hematoporphyrin Derivative on Rabbit Corneal Endothelial Cell Function and Ultrastructure

Hematoporphyrin derivative (HpD) is a systemically administered photosensitizing agent that may be of value in the treatment of solid tumors. When corneal endothelial cells were perfused in the specular microscope with HpD and exposed to a 25-W incandescent light at 5 cm (5.5 mW/cm) there was anatomic disruption of corneal endothelial cells and swelling of the corneal stroma. Perfusion with 0.2...

متن کامل

Singlet oxygen as a mediator in the hematoporphyrin-catalyzed photooxidation of NADPH to NADP+ in deuterium oxide.

The oxygen-dependent photooxidation of NADPH in the presence of hematoporphyrin in D2O results in the production of enzymatically active NADP+. The reaction is not inhibited by benzoate, mannitol, superoxide dismutase, or catalase. Moreover, addition of either potassium superoxide or H2O2 does not potentiate the reaction. This suggests OH-, H2O2, and O-2 are not likely to be the reactive oxygen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 923 3  شماره 

صفحات  -

تاریخ انتشار 1987