IL-1 mediates TNF-induced osteoclastogenesis.

نویسندگان

  • Shi Wei
  • Hideki Kitaura
  • Ping Zhou
  • F Patrick Ross
  • Steven L Teitelbaum
چکیده

TNF-induced receptor activator NF-kappaB ligand (RANKL) synthesis by bone marrow stromal cells is a fundamental component of inflammatory osteolysis. We found that this process was abolished by IL-1 receptor antagonist (IL-1Ra) or in stromal cells derived from type I IL-1 receptor-deficient (IL-1RI-deficient) mice. Reflecting sequential signaling of the cytokines TNF and IL-1, TNF induces stromal cell expression of IL-1 and IL-1RI. These data suggest that TNF regulates RANKL expression via IL-1, and, therefore, IL-1 plays a role in TNF-induced periarticular osteolysis. Consistent with this posture, TNF-stimulated osteoclastogenesis in cultures consisting of WT marrow macrophages and stromal cells exposed to IL-1Ra or in cocultures established with IL-1RI-deficient stromal cells was reduced approximately 50%. The same magnitude of osteoclast inhibition occurred in IL-1RI-deficient mice following TNF administration in vivo. Like TNF, IL-1 directly targeted osteoclast precursors and promoted the osteoclast phenotype in a TNF-independent manner in the presence of permissive levels of RANKL. IL-1 is able to induce RANKL expression by stromal cells and directly stimulate osteoclast precursor differentiation under the aegis of p38 MAPK. Thus, IL-1 mediates the osteoclastogenic effect of TNF by enhancing stromal cell expression of RANKL and directly stimulating differentiation of osteoclast precursors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tnf-alpha and Rankl Cooperatively Mediate Implant Particle-induced Osteoclastogenesis via Distinct Actions

Introduction: Periprosthetic osteolysis stimulated by implant particulate debris is mediated by various pro-inflammatory cytokines (TNF-alpha, IL-1, and IL-6) that enhance osteoclast differentiation and activity, yet TNF-alpha (TNF) has recently been identified as playing a critical role in this process (1,2). Specifically, in osteoclast precursor cells implant particles activate the nuclear tr...

متن کامل

Immunological Reaction in TNF-α-Mediated Osteoclast Formation and Bone Resorption In Vitro and In Vivo

Tumor necrosis factor- α (TNF- α ) is a cytokine produced by monocytes, macrophages, and T cells and is induced by pathogens, endotoxins, or related substances. TNF- α may play a key role in bone metabolism and is important in inflammatory bone diseases such as rheumatoid arthritis. Cells directly involved in osteoclastogenesis include macrophages, which are osteoclast precursor cells, osteobla...

متن کامل

MKK3/6-p38 MAPK Signaling Is Required for IL-1 and TNF- -Induced RANKL Expression in Bone Marrow Stromal Cells

Coupled bone turnover is directed by the expression of receptor-activated NFB ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Proinflammatory cytokines, such as interleukin-1 (IL-1 ) and tumor necrosis factor(TNF) induce RANKL expression in bone marrow stromal cells. Here, we report that IL-1 and TNF-induced RANKL requires p38 mitogen-activating protein kinase (MAPK) pathway activ...

متن کامل

Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.

The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodo...

متن کامل

Interleukin-11: a new cytokine critical for osteoclast development.

Stromal cells of the bone marrow control the development of osteoclasts through the production of cytokines capable of promoting the proliferation and differentiation of hematopoietic progenitors. Moreover, the deregulated production of the cytokine IL-6 in the bone marrow mediates an increase in osteoclastogenesis after estrogen loss. IL-6, however, does not influence osteoclastogenesis in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 115 2  شماره 

صفحات  -

تاریخ انتشار 2005