Reduced motoneuron excitability in a rat model of sepsis.
نویسندگان
چکیده
Many critically ill patients in intensive care units suffer from an infection-induced whole body inflammatory state known as sepsis, which causes severe weakness in patients who survive. The mechanisms by which sepsis triggers intensive care unit-acquired weakness (ICUAW) remain unclear. Currently, research into ICUAW is focused on dysfunction of the peripheral nervous system. During electromyographic studies of patients with ICUAW, we noticed that recruitment was limited to few motor units, which fired at low rates. The reduction in motor unit rate modulation suggested that functional impairment within the central nervous system contributes to ICUAW. To understand better the mechanism underlying reduced firing motor unit firing rates, we moved to the rat cecal ligation and puncture model of sepsis. In isoflurane-anesthetized rats, we studied the response of spinal motoneurons to injected current to determine their capacity for initiating and firing action potentials repetitively. Properties of single action potentials and passive membrane properties of motoneurons from septic rats were normal, suggesting excitability was normal. However, motoneurons exhibited striking dysfunction during repetitive firing. The sustained firing that underlies normal motor unit activity and smooth force generation was slower, more erratic, and often intermittent in septic rats. Our data are the first to suggest that reduced excitability of neurons within the central nervous system may contribute to ICUAW.
منابع مشابه
Decreased cardiac excitability secondary to reduction of sodium current may be a significant contributor to reduced contractility in a rat model of sepsis
INTRODUCTION Multisystem organ failure remains a poorly understood complication of sepsis. During sepsis, reduced excitability contributes to organ failure of skeletal muscle, nerves and the spinal cord. The goal of this study was to determine whether reduced excitability might also contribute to cardiac failure during sepsis. METHODS Wistar rats were made septic by cecal ligation and punctur...
متن کاملEffects of motoneuron properties on reflex s
The influence of motoneuron pool properties on the stability of the stretch reflex at the ankle in subjects with spinal cord injury was tested using a comprehensive model of the reflex pathway. This model included the passive and active components of the triceps surae muscles, muscle spindles, neural transport delays, limb mechanical properties, and a lumped parameter model of the motoneuron po...
متن کاملConcurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability.
The movements that define behavior are controlled by motoneuron output, which depends on the excitability of motoneurons and the synaptic inputs they receive. Modulation of motoneuron excitability takes place over many time scales. To determine whether motoneuron excitability is specifically modulated during the active versus the quiescent phase of rhythmic behavior, we compared the input-outpu...
متن کاملDefective Ca2+ channel clustering in axon terminals disturbs excitability in motoneurons in spinal muscular atrophy
Proximal spinal muscular atrophy (SMA) is a motoneuron disease for which there is currently no effective treatment. In animal models of SMA, spinal motoneurons exhibit reduced axon elongation and growth cone size. These defects correlate with reduced beta-actin messenger RNA and protein levels in distal axons. We show that survival motoneuron gene (Smn)-deficient motoneurons exhibit severe defe...
متن کاملA simulation study of reflex instability in spasticity: origins of clonus.
Clonus is defined as an involuntary rhythmic muscle contraction that generally occurs in people who have sustained lesions involving descending motor pathways in the neuraxis, and is usually accompanied by other signs of reflex hyperexcitability such as spasticity. This paper hypothesizes that clonus arises when two conditions occur simultaneously: 1) the reflex pathway contains long delay time...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 109 7 شماره
صفحات -
تاریخ انتشار 2013