Acoustic Emotion Recognition Using Linear and Nonlinear Cepstral Coefficients

نویسندگان

  • Farah Chenchah
  • Zied Lachiri
چکیده

Recognizing human emotions through vocal channel has gained increased attention recently. In this paper, we study how used features, and classifiers impact recognition accuracy of emotions present in speech. Four emotional states are considered for classification of emotions from speech in this work. For this aim, features are extracted from audio characteristics of emotional speech using Linear Frequency Cepstral Coefficients (LFCC) and Mel-Frequency Cepstral Coefficients (MFCC). Further, these features are classified using Hidden Markov Model (HMM) and Support Vector Machine (SVM). Keywords—Mel Frequency Cepstral Coefficients (MFCC); Linear Frequency Cepstral Coefficients (LFCC);Hidden Markov Model (HMM); Support Vector Machine (SVM); emotion recognition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Speech Emotion Recognition Based on Deep Belief Networks and Wavelet Packet Cepstral Coefficients

A wavelet packet based adaptive filter-bank construction combined with Deep Belief Network(DBN) feature learning method is proposed for speech signal processing in this paper. On this basis, a set of acoustic features are extracted for speech emotion recognition, namely Coiflet Wavelet Packet Cepstral Coefficients (CWPCC). CWPCC extends the conventional MelFrequency Cepstral Coefficients (MFCC)...

متن کامل

Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)

Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...

متن کامل

Speaker Recognition in Clean and Noisy Environment Using Rbfnn and Aann

In this paper, we propose a speaker recognition system based on features extracted from the speech recorded using close speaking microphone in clean and noisy environment. This system recognizes the speakers from a number of acoustic features that include linear predictive coefficients (LPC), linear predictive cepstral coefficients (LPCC) and Mel-frequency cepstral coefficients (MFCC). RBFNN an...

متن کامل

Improving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms

One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015