Vibrational control of electron-transfer reactions: a feasibility study for the fast coherent transfer regime.

نویسندگان

  • P Antoniou
  • Z Ma
  • P Zhang
  • D N Beratan
  • S S Skourtis
چکیده

Molecular vibrations and electron-vibrational interactions are central to the control of biomolecular electron and energy-transfer rates. The vibrational control of molecular electron-transfer reactions by infrared pulses may enable the precise probing of electronic-vibrational interactions and of their roles in determining electron-transfer mechanisms. This type of electron-transfer rate control is advantageous because it does not alter the electronic state of the molecular electron-transfer system or irreversibly change its molecular structure. For bridge-mediated electron-transfer reactions, infrared (vibrational) excitation of the bridge linking the electron donor to the electron acceptor was suggested as being capable of influencing the electron-transfer rate by modulating the bridge-mediated donor-to-acceptor electronic coupling. This kind of electron-transfer experiment has been realized, demonstrating that bridge-mediated electron-transfer rates can be changed by exciting vibrational modes of the bridge. Here, we use simple models and ab initio computations to explore the physical constraints on one's ability to vibrationally perturb electron-transfer rates using infrared excitation. These constraints stem from the nature of molecular vibrational spectra, the strengths of the electron-vibrational coupling, and the interaction between molecular vibrations and infrared radiation. With these constraints in mind, we suggest parameter regimes and molecular architectures that may enhance the vibrational control of electron transfer for fast coherent electron-transfer reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Steepest Descent Path Study of Electron-Transfer Reactions†

A nonadiabatic steepest descent path method is developed as a qualitative tool to analyze and characterize three different kinetic regimes of electron transfer. In this approach, Miller’s semiclassical instanton solution and Pechukas’ self-consistent treatment of nonadiabatic coupling are applied to the path integral representation of the two-state diffusion equation. The resulting steepest des...

متن کامل

Mixed Quantum/Classical Dynamics of Hydrogen Transfer Reactions

This article presents the methodology we have developed for the simulation of hydrogen transfer reactions, including multiple proton transfer and proton-coupled electron transfer reactions. The central method discussed is molecular dynamics with quantum transitions (MDQT), which is a mixed quantum/classical surface hopping method that incorporates nonadiabatic transitions between the proton vib...

متن کامل

Precise control of molecular dynamics with a femtosecond frequency comb.

We present a general and highly efficient scheme for performing narrow-band Raman transitions between molecular vibrational levels using a coherent train of weak pump-dump pairs of shaped ultrashort pulses. The use of weak pulses permits an analytic description within the framework of coherent control in the perturbative regime, while coherent accumulation of many pulse pairs enables near unity...

متن کامل

Spectral analysis of electron transfer kinetics. I. Symmetric reactions

A spectral analysis method is proposed to characterize multiple time scales in electron transfer processes, including vibrational relaxation, electronic coherence, activated curve crossing, or barrier crossing. Within this unified framework, observed rate behavior, biexponential and multiexponential decay, and population recurrences and oscillations are different components of the same kinetic ...

متن کامل

Dynamical arrest of electron transfer in liquid crystalline solvents.

We argue that electron transfer reactions in slowly relaxing solvents proceed in the nonergodic regime, making the reaction activation barrier strongly dependent on the solvent dynamics. For typical dielectric relaxation times of polar nematics, electron transfer reactions in the subnanosecond time scale fall into nonergodic regime in which nuclear solvation energies entering the activation bar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 46  شماره 

صفحات  -

تاریخ انتشار 2015