A Pseudospectral Method for Solving the Time-fractional Generalized Hirota–satsuma Coupled Korteweg–de Vries System
نویسندگان
چکیده
In this paper, a new space-time spectral algorithm is constructed to solve the generalized Hirota-Satsuma coupled Korteweg-de Vries (GHS-C-KdV) system of time-fractional order. The present algorithm consists of applying the collocationspectral method in conjunction with the operational matrix of fractional derivative for the double Jacobi polynomials, which will be employed as a basis function for the spectral solution. The main characteristic behind this approach is that such problems will reduce to those of solving algebraic systems of equations that greatly simplifying the problem. For ensuring the accuracy and efficiency of the presented algorithm, we apply it to find the approximate solutions of two specific problems, namely, a homogeneous form of the GHS-C-KdV system and a inhomogeneous GHS-C-KdV system.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملOn numerical integration of coupled Korteweg-de Vries System
We introduce a numerical method for general coupled Korteweg-de Vries systems. The scheme is valid for solving Cauchy problems for arbitrary number of equations with arbitrary constant coefficients. The numerical scheme takes its legality by proving its stability and convergence which gives the conditions and the appropriate choice of the grid sizes. The method is applied to Hirota-Satsuma (HS)...
متن کاملN ov 2 00 2 On numerical integration of coupled Korteweg - de Vries System
We introduce a numerical method for general coupled Korteweg-de Vries systems. The scheme is valid for solving Cauchy problems for arbitrary number of equations with arbitrary constant coefficients. The numerical scheme takes its legality by proving its stability and convergence which gives the conditions and the appropriate choice of the grid sizes. The method is applied to Hirota-Satsuma (HS)...
متن کاملA Novel Approach for Korteweg-de Vries Equation of Fractional Order
In this study, the localfractional variational iterationmethod (LFVIM) and the localfractional series expansion method (LFSEM) are utilized to obtain approximate solutions for Korteweg-de Vries equation (KdVE) within local fractionalderivative operators (LFDOs). The efficiency of the considered methods is illustrated by some examples. The results reveal that the suggested algorithms are very ef...
متن کاملMulti-component generalizations of the Hirota-Satsuma coupled KdV equation
In this paper, we consider multi-component generalizations of the Hirota–Satsuma coupled Korteweg–de Vries (KdV) equation. By introducing a Lax pair, we present a matrix generalization of the Hirota–Satsuma coupled KdV equation, which is shown to be reduced to a vector Hirota–Satsuma coupled KdV equation. By using Hirota's bilinear method, we find a few soliton solutions to the vector Hirota–Sa...
متن کامل