Haploinsufficiency of Def Activates p53-Dependent TGFβ Signalling and Causes Scar Formation after Partial Hepatectomy
نویسندگان
چکیده
The metazoan liver exhibits a remarkable capacity to regenerate lost liver mass without leaving a scar following partial hepatectomy (PH). Whilst previous studies have identified components of several different signaling pathways that are essential for activation of hepatocyte proliferation during liver regeneration, the mechanisms that enable such regeneration to occur without accompanying scar formation remain poorly understood. Here we use the adult zebrafish liver, which can regenerate within two weeks following PH, as a new genetic model to address this important question. We focus on the role of Digestive-organ-expansion-factor (Def), a nucleolar protein which has recently been shown to complex with calpain3 (Capn3) to mediate p53 degradation specifically in the nucleolus, in liver regeneration. Firstly, we show that Def expression is up-regulated in the wild-type liver following amputation, and that the defhi429/+ heteroozygous mutant (def+/-) suffers from haploinsufficiency of Def in the liver. We then show that the expression of pro-inflammatory cytokines is up-regulated in the def+/- liver, which leads to distortion of the migration and the clearance of leukocytes after PH. Transforming growth factor β (TGFβ) signalling is thus activated in the wound epidermis in def+/- due to a prolonged inflammatory response, which leads to fibrosis at the amputation site. Fibrotic scar formation in def+/- is blocked by the over-expression of Def, by the loss-of-function of p53, and by treatment with anti-inflammation drug dexamethasone or TGFβ-signalling inhibitor SB431542. We finally show that the Def- p53 pathway suppresses fibrotic scar formation, at least in part, through the regulation of the expression of the pro-inflammatory factor, high-mobility group box 1. We conclude that the novel Def- p53 nucleolar pathway functions specifically to prevent a scar formation at the amputation site in a normal amputated liver.
منابع مشابه
Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration
Transforming growth factor beta (TGFβ) signalling is essential for wound healing, including both non-specific scar formation and tissue-specific regeneration. Specific TGFβ isoforms and downstream mediators of canonical and non-canonical signalling play different roles in each of these processes. Here we review the role of TGFβ signalling during tissue repair, with a particular focus on the pro...
متن کاملHedgehog signalling in liver regeneration
Introduction The adult liver has unique regenerative capabilities. Adult livers generally regenerate fully functional liver cells when injured, unlike other vital adult organs which typically respond to cell loss by forming scar tissue. The mechanisms underlying these differences are not well understood, particularly since adult livers are perfectly capable of scarring. In fact, transient scar ...
متن کاملI-34: Steroid Hormone Signalling at the FetomaternalInterface
Background: Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. However, HESCs also abundantly express androgen receptors (AR), yet the role of this member of the superfamily of ligand-dependent transcription factors in the decidual process remains poorly elucidated. Materials a...
متن کاملThe regenerative capacity of the zebrafish heart is dependent on TGFβ signaling.
Mammals respond to a myocardial infarction by irreversible scar formation. By contrast, zebrafish are able to resolve the scar and to regenerate functional cardiac muscle. It is not known how opposing cellular responses of fibrosis and new myocardium formation are spatially and temporally coordinated during heart regeneration in zebrafish. Here, we report that the balance between the reparative...
متن کاملInduction of p53-Dependent p21 Limits Proliferative Activity of Rat Hepatocytes in the Presence of Hepatocyte Growth Factor
BACKGROUND Hepatocyte growth factor (HGF), a potent mitogen for hepatocytes, enhances hepatocyte function without stimulating proliferation, depending on the physiological conditions. p53, a transcription factor, suppresses the cell proliferation by expressing p21(WAF1/CIP1) in various tissues. AIM To investigate the mechanism through which the hepatocytes maintain mitotically quiescent even ...
متن کامل