Surface plasmon-quantum dot coupling from arrays of nanoholes.

نویسندگان

  • Alexandre G Brolo
  • Shing C Kwok
  • Matthew D Cooper
  • Matthew G Moffitt
  • C-W Wang
  • Reuven Gordon
  • Jason Riordon
  • Karen L Kavanagh
چکیده

The coupling of semiconductor quantum dots (QDs) to the surface plasmon (SP) modes of nanohole arrays in a metal film was demonstrated for the first time, showing enhancement in the spontaneous emission by 2 orders of magnitude. The SP-enhanced transmission resonances of the nanohole arrays were tuned around the photoluminescence (PL) peak of polystyrene-b-poly(acrylic acid) (PS-b-PAA)-stabilized cadmium sulfide (CdS) quantum dots (QDs) in contact with the arrays. As a result the overall PL from the SP-QD system was enhanced by 2 orders of magnitude, even after excluding the enhanced transmission of the nanohole array without the QDs. The maximum enhancement occurred when the resonance from the nanohole array matched the QD PL spectrum. Time-resolved PL measurements were used to estimate the relative contribution of different physical mechanisms to the enhanced spontaneous emission. The increased spontaneous emission in the SP-QD system is promising for prospective plasmonic light-emitting devices incorporating QDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced fluorescence from arrays of nanoholes in a gold film.

Arrays of sub-wavelength holes (nanoholes) in gold films were used as a substrate for enhanced fluorescence spectroscopy. Seven arrays of nanoholes with distinct periodicities (distances between the holes) were fabricated. The arrays were then spin-coated with polystyrene films containing different concentrations of the fluorescent dye oxazine 720. The dye was excited via resonant extraordinary...

متن کامل

Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays

Related Articles Large-area nanostructured substrates for surface enhanced Raman spectroscopy Appl. Phys. Lett. 100, 171913 (2012) Controlling light propagation with nanowires Appl. Phys. Lett. 100, 171903 (2012) Diffraction resonance with strong optical-field enhancement from gain-assisted hybrid plasmonic structure Appl. Phys. Lett. 100, 161904 (2012) Direct mapping of plasmonic coupling betw...

متن کامل

Coupling of guided Surface Plasmon Polaritons to proximal self-assembled InGaAs Quantum Dots

We present investigations of the propagation length of guided surface plasmon polaritons along Au waveguides on GaAs and their coupling to near surface InGaAs self-assembled quantum dots. Our results reveal surface plasmon propagation lengths ranging from 13.4 ± 1.7 μm to 27.5 ± 1.5 μm as the width of the waveguide increases from 2-5 μm. Experiments performed on active structures containing nea...

متن کامل

Conductance in quantum wires by three quantum dots arrays

A noninteracting quantum-dot arrays side coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. The conductance at zero temperature develops an oscillating band with resonances and antiresonances due to constructive and destructive interference in the ballistic channel, respectively. Moreover, we have fo...

متن کامل

Attomolar protein detection using in-hole surface plasmon resonance.

An in-hole nanohole surface plasmon resonance sensing scheme is demonstrated. Arrays of periodic nanoholes milled through thin layers of SiO(x) and gold were used to detect the binding of organic and biological molecules inside the nanoholes, while blocking the gold surfaces outside the holes. This new approach is more efficient than the previous nanohole array method, where the response was re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 110 16  شماره 

صفحات  -

تاریخ انتشار 2006