On the Order of Accuracy of Finite Difference Operators on Diagonal Norm Based Summation-by-parts Form

نویسندگان

  • VIKTOR LINDERS
  • TOMAS LUNDQUIST
  • JAN NORDSTRÖM
چکیده

In this paper we generalise results regarding the order of accuracy of finite difference operators on Summation-By-Parts (SBP) form, previously known to hold on uniform grids, to grids with arbitrary point distributions near domain boundaries. We give a definite proof that the order of accuracy in the interior of a diagonal norm based SBP operator must be at least twice that of the boundary stencil, irrespective of the grid point distribution near the boundary. Additionally, we prove that if the order of accuracy in the interior is precisely twice that of the boundary, then the diagonal norm defines a quadrature rule of the same order as the interior stencil. Again, this result is independent of the grid point distribution near the domain boundaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal diagonal-norm SBP operators

Optimal boundary closures are derived for first derivative, finite difference operators of order 2, 4, 6 and 8. The closures are based on a diagonal-norm summation-by-parts (SBP) framework, thereby guaranteeing linear stability on piecewise curvilinear multi-block grids and entropy stability for nonlinear equations that support a convex extension. The new closures are developed by enriching con...

متن کامل

Summation-by-parts operators and high-order quadrature

Summation-by-parts (SBP) operators are finite-difference operators that mimic integration by parts. The SBP operator definition includes a weight matrix that is used formally for discrete integration; however, the accuracy of the weight matrix as a quadrature rule is not explicitly part of the SBP definition. We show that SBP weight matrices are related to trapezoid rules with end corrections w...

متن کامل

An analysis of non-conforming grid techniques for high order summation-by-parts metods

We derive a bound on the order of accuracy of interpolation operators for energy stable summation-by-parts discretizations on non-conforming multiblock meshes. The new theoretical result, which corroborate with experience from previous work, implies a local reduction in the formal accuracy of summation-by-parts discretizations based on diagonal norms. Numerical results confirm a corresponding r...

متن کامل

New Diagonal-Norm Summation-by-Parts Operators for the First Derivative with Increased Order of Accuracy

In combination with simultaneous approximation terms, summation-by-parts (SBP) operators provide a flexible and efficient methodology that leads to consistent, conservative, and provably stable high-order discretizations. Traditional diagonal-norm SBP operators with a repeating interior point operator lead to solutions that have a global order of accuracy lower than the order of the interior po...

متن کامل

Diagonal-norm upwind SBP operators

I will present some new results concerning explicit high-order finite difference methods applied to hyperbolic systems. In particular I will present some new results that support the addition of appropriate artificial dissipation, even for linear problems. Recently, high-order accurate first derivative finite difference operators are were derived that naturally introduce artificial dissipation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017