Intense Resistance Exercise Promotes the Acute and Transient Nuclear Translocation of Small Ubiquitin-Related Modifier (SUMO)-1 in Human Myofibres
نویسندگان
چکیده
Protein sumoylation is a posttranslational modification triggered by cellular stress. Because general information concerning the role of small ubiquitin-related modifier (SUMO) proteins in adult skeletal muscle is sparse, we investigated whether SUMO-1 proteins will be subjected to time-dependent changes in their subcellular localization in sarcoplasmic and nuclear compartments of human type I and II skeletal muscle fibers in response to acute stimulation by resistance exercise (RE). Skeletal muscle biopsies were taken at baseline (PRE), 15, 30, 60, 240 min and 24 h post RE from 6 male subjects subjected to a single bout of one-legged knee extensions. SUMO-1 localization was determined via immunohistochemistry and confocal laser microscopy. At baseline SUMO-1 was localized in perinuclear regions of myonuclei. Within 15 and up to 60 min post exercise, nuclear SUMO-1 localization was significantly increased (p < 0.01), declining towards baseline levels within 240 min post exercise. Sarcoplasmic SUMO-1 localization was increased at 15 min post exercise in type I and up to 30 min post RE in type II myofibres. The changing localization of SUMO-1 proteins acutely after intense muscle contractions points to a role for SUMO proteins in the acute regulation of the skeletal muscle proteome after exercise.
منابع مشابه
Small ubiquitin-related modifier-1 modification mediates resolution of CREB-dependent responses to hypoxia.
Phosphorylation-dependent ubiquitination combined with proteasomal degradation of transcriptional regulators is a recently appreciated mechanism for control of a number of inflammatory genes. Far less is known about the counterregulatory mechanisms that repress transcriptional activity in these pathways during resolution. Here, we investigated the transient nature of hypoxia-induced tumor necro...
متن کاملSmall ubiquitin-related modifier 1 is involved in hepatocellular carcinoma progression via mediating p65 nuclear translocation
Small ubiquitin-related modifier (SUMO) proteins participate in a post-translational modification called SUMOylation and regulate a variety of intracellular processes, such as targeting proteins for nuclear import. The nuclear transport of p65 results in the activation of NF-κB, and p65 contains several SUMO interacting motifs (SIMs). However, the relationship between p65 and SUMO1 in hepatocel...
متن کاملMultivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO
RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins...
متن کاملUbc9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2
The yeast UBC9 gene encodes a protein with homology to the E2 ubiquitin-conjugating enzymes that mediate the attachment of ubiquitin to substrate proteins [1]. Depletion of Ubc9p arrests cells in G2 or early M phase and stabilizes B-type cyclins [1]. p18(Ubc9), the Xenopus homolog of Ubc9p, associates specifically with p88(RanGAP1) and p340(RanBP2) [2]. Ran-binding protein 2 (p340(RanBP2)) is a...
متن کاملSmall ubiquitin-related modifier (SUMO)-1 promotes glycolysis in hypoxia.
Under conditions of hypoxia, most eukaryotic cells undergo a shift in metabolic strategy, which involves increased flux through the glycolytic pathway. Although this is critical for bioenergetic homeostasis, the underlying mechanisms have remained incompletely understood. Here, we report that the induction of hypoxia-induced glycolysis is retained in cells when gene transcription or protein syn...
متن کامل