Pattern avoidance in partial permutations ( extended abstract )

نویسندگان

  • Anders Claesson
  • Sergey Kitaev
چکیده

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A partial permutation of length n with k holes is a sequence of symbols π = π1π2 · · ·πn in which each of the symbols from the set {1, 2, . . . , n− k} appears exactly once, while the remaining k symbols of π are “holes”. We introduce pattern-avoidance in partial permutations and prove that most of the previous results on Wilf equivalence of permutation patterns can be extended to partial permutations with an arbitrary number of holes. We also show that Baxter permutations of a given length k correspond to a Wilf-type equivalence class with respect to partial permutations with (k − 2) holes. Lastly, we enumerate the partial permutations of length n with k holes avoiding a given pattern of length at most four, for each n ≥ k ≥ 1. Résumé. Nous introduisons un concept de permutations partielles. Une permutation partielle de longueur n avec k trous est une suite finie de symboles π = π1π2 · · ·πn dans laquelle chaque nombre de l’ensemble {1, 2, . . . , n− k} apparaı̂t précisement une fois, tandis que les k autres symboles de π sont des “trous”. Nous introduisons l’étude des permutations partielles à motifs exclus et nous montrons que la plupart des résultats sur l’équivalence de Wilf peuvent être généralisés aux permutations partielles avec un nombre arbitraire de trous. De plus, nous montrons que les permutations de Baxter d’une longueur donnée k forment une classe d’équivalence du type Wilf par rapport aux permutations partielles avec (k − 2) trous. Enfin, nous présentons l’énumeration des permutations partielles de longueur n avec k trous qui évitent un motif de longueur ` ≤ 4, pour chaque n ≥ k ≥ 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Avoidance in Partial Permutations

Motivated by the concept of partial words, we introduce an analogous concept of partial permutations. A partial permutation of length n with k holes is a sequence of symbols π = π1π2 · · · πn in which each of the symbols from the set {1, 2, . . . , n− k} appears exactly once, while the remaining k symbols of π are “holes”. A. Claesson, V. Jeĺınek and S. Kitaev were supported by the Icelandic Re...

متن کامل

Extended Abstract for Enumerating Pattern Avoidance for Affine Permutations

In this paper we study pattern avoidance for affine permutations. In particular, we show that for a given pattern p, there are only finitely many affine permutations in S̃n that avoid p if and only if p avoids the pattern 321. We then count the number of affine permutations that avoid a given pattern p for each p in S3, as well as give some conjectures for the patterns in S4. This paper is just ...

متن کامل

Arc Permutations ( extended abstract )

Arc permutations and unimodal permutations were introduced in the study of triangulations and characters. In this paper we describe combinatorial properties of these permutations, including characterizations in terms of pattern avoidance, connections to Young tableaux, and an affine Weyl group action on them. Résumé. Les permutations arc et les permutations unimodales ont été introduites dans l...

متن کامل

Sorting classes – Extended Abstract

Weak and strong sorting classes are pattern-closed classes that are also closed downwards under the weak and strong orders on permutations. They are studied using partial orders that capture both the subpermutation order and the weak or strong order. In both cases they can be characterised by forbidden permutations in the appropriate order. The connection with the corresponding forbidden permut...

متن کامل

Multiple Pattern Avoidance with respect to Fixed Points and Excedances

We study the distribution of the statistics ‘number of fixed points’ and ‘number of excedances’ in permutations avoiding subsets of patterns of length 3. We solve all the cases of simultaneous avoidance of more than one pattern, giving generating functions enumerating these two statistics. Some cases are generalized to patterns of arbitrary length. For avoidance of one single pattern we give pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010