Influence of biotransformation on trophic transfer of the PAH, fluoranthene.
نویسندگان
چکیده
The persistence of polycyclic aromatic hydrocarbons (PAHs) in marine sediments may be influenced by benthic invertebrate bioturbation. Through processes such as deposit-feeding and enhancement of microbial metabolic activity PAHs may be remobilized from the sediment compartment, and either transferred to organisms at higher trophic levels or to the overlying water column, both processes inevitably changing the bioavailability of the PAH. Accumulation of contaminants from one level in the food chain to the next depends on feeding rate and assimilation efficiency, two factors that basically vary with food quality and contaminant type. Though it is generally believed that pre-consumptive biotransformation will reduce bioavailability due to the more polar nature of the metabolites compared to the unchanged parent compound, theoretically the decrease in lipophilicity will increase the sediment/food desorption rate in the intestine, and some metabolites will still be lipophilic enough to be absorbed by passive diffusion. We examined the trophic transfer of the PAH, fluoranthene from two closely related polychaete species (i.e., Capitella sp. I and Capitella sp. S), differing in their biotransformation ability, to the predatory polychaete, Nereis virens. We found that N. virens fed the biotransforming species, Capitella sp. I, accumulated significantly more Flu equivalents compared to worms fed Capitella sp. S, which have a very limited biotransformation ability. The dose-specific increase in N. virens intestinal Flu concentration was approximately twice as high in worms fed Capitella sp. I (equation: gut content=7.3 x dose-3.9) compared to worms fed Capitella sp. S (equation: gut content=3.2 x dose+0.6). In addition, we measured DNA damage, using the comet assay, in N. virens intestinal cells after feeding with the two prey species. We did not detect DNA damage above 'background' levels for worms fed either of the two Capitella species, possibly due to relatively low intestinal Flu concentrations in N. virens. Our results indicate that accumulation of PAHs by infaunal organisms may play an important role in the transfer of this type of contaminant to higher trophic levels. Moreover, we observed differences in transfer potential between parent compounds and their respective metabolites, which may influence the fate of these compounds in marine ecosystems. However, from the present study it cannot be concluded whether differences in biotransformation ability among prey species can lead to different effects in their predators.
منابع مشابه
Biotransformation of the high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by Sphingobium sp. strain KK22 and identification of new products of non-alternant PAH biodegradation by liquid chromatography electrospray ionization tandem mass spectrometry
A pathway for the biotransformation of the environmental pollutant and high-molecular weight polycyclic aromatic hydrocarbon (PAH) benzo[k]fluoranthene by a soil bacterium was constructed through analyses of results from liquid chromatography negative electrospray ionization tandem mass spectrometry (LC/ESI(-)-MS/MS). Exposure of Sphingobium sp. strain KK22 to benzo[k]fluoranthene resulted in t...
متن کاملRelationship between PAH biotransformation as measured by biliary metabolites and EROD activity, and genotoxicity in juveniles of sole (Solea solea).
Polycylic aromatic hydrocarbons (PAHs) are ubiquitous contaminants in the marine environment. Their toxicity is mainly linked to the ability of marine species to biotransform them into reactive metabolites. PAHs are thus often detected at trace levels in animal tissues. For biomonitoring purposes, this findings have two main consequences, (i) the determination of the PAH tissue concentration is...
متن کاملMetabolism of the polycyclic aromatic hydrocarbon fluoranthene by the polychaete Capitella capitata species I.
Previous studies have shown that infaunal deposit feeders may enhance the loss of organic contaminants from sediments. However, the extent to which this occurs as a result of sediment microbial stimulation, porewater flushing, or biotransformation by infauna remains unclear. The purpose of this study was to determine whether the infaunal polychaete Capitella sp. I is able to metabolize the poly...
متن کاملDifferences in PAH tolerance between Capitella species: underlying biochemical mechanisms.
The polychaete Capitella capitata consists of a species complex within which differences in tolerance to toxicants have been observed. For example, it has been shown that Capitella sp. S is more sensitive (e.g., in terms of survival, growth and reproduction) to PAH and other stressors than the more opportunistic Capitella sp. I, which is able to take up and biotransform the PAH fluoranthene (Fl...
متن کاملBioaccumulation, biotransformation and trophic transfer of arsenic in the aquatic food chain.
The occurrence, distribution, speciation, and biotransformation of arsenic in aquatic environment (marine and freshwater) have been studied extensively by several research groups during last couple of decades. However, most of those studies have been conducted in marine waters, and the results are available in a number of reviews. Speciation, bioaccumulation, and biotransformation of arsenic in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Aquatic toxicology
دوره 80 3 شماره
صفحات -
تاریخ انتشار 2006