The yeast Tsa1 peroxiredoxin is a ribosome-associated antioxidant.

نویسندگان

  • Eleanor W Trotter
  • Jonathan D Rand
  • Jill Vickerstaff
  • Chris M Grant
چکیده

The yeast Tsa1 peroxiredoxin, like other 2-Cys peroxiredoxins, has dual activities as a peroxidase and as a molecular chaperone. Its peroxidase function predominates in lower-molecular-mass forms, whereas a super-chaperone form predominates in high-molecular-mass complexes. Loss of TSA1 results in aggregation of ribosomal proteins, indicating that Tsa1 functions to maintain the integrity of the translation apparatus. In the present study we report that Tsa1 functions as an antioxidant on actively translating ribosomes. Its peroxidase activity is required for ribosomal function, since mutation of the peroxidatic cysteine residue, which inactivates peroxidase but not chaperone activity, results in sensitivity to translation inhibitors. The peroxidatic cysteine residue is also required for a shift from ribosomes to its high-molecular-mass form in response to peroxide stress. Thus Tsa1 appears to function predominantly as an antioxidant in protecting both the cytosol and actively translating ribosomes against endogenous ROS (reactive oxygen species), but shifts towards its chaperone function in response to oxidative stress conditions. Analysis of the distribution of Tsa1 in thioredoxin system mutants revealed that the ribosome-associated form of Tsa1 is increased in mutants lacking thioredoxin reductase (trr1) and thioredoxins (trx1 trx2) in parallel with the general increase in total Tsa1 levels which is observed in these mutants. In the present study we show that deregulation of Tsa1 in the trr1 mutant specifically promotes translation defects including hypersensitivity to translation inhibitors, increased translational error-rates and ribosomal protein aggregation. These results have important implications for the role of peroxiredoxins in stress and growth control, since peroxiredoxins are likely to be deregulated in a similar manner during many different disease states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-dependent Regulation of Gluconeogenesis by a Novel Mechanism Mediated by a Peroxidatic Cysteine of Peroxiredoxin

Peroxiredoxin is an abundant peroxidase, but its non-peroxidase function is also important. In this study, we discovered that Tsa1, a major peroxiredoxin of budding yeast cells, is required for the efficient flux of gluconeogenesis. We found that the suppression of pyruvate kinase (Pyk1) via the interaction with Tsa1 contributes in part to gluconeogenic enhancement. The physical interactions be...

متن کامل

The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress

Peroxiredoxins are ubiquitous thiol-specific proteins that have multiple functions in stress protection, including protection against oxidative stress. Tsa1 is the major yeast peroxiredoxin and we show that it functions as a specific antioxidant to protect the cell against the oxidative stress caused by nascent-protein misfolding and aggregation. Yeast mutants lacking TSA1 are sensitive to misf...

متن کامل

Loss of Yeast Peroxiredoxin Tsa1p Induces Genome Instability through Activation of the DNA Damage Checkpoint and Elevation of dNTP Levels

Peroxiredoxins are a family of antioxidant enzymes critically involved in cellular defense and signaling. Particularly, yeast peroxiredoxin Tsa1p is thought to play a role in the maintenance of genome integrity, but the underlying mechanism is not understood. In this study, we took a genetic approach to investigate the cause of genome instability in tsa1Delta cells. Strong genetic interactions ...

متن کامل

Methionine Oxidation of Sup35 Protein Induces Formation of the [PSI+] Prion in a Yeast Peroxiredoxin Mutant

The frequency with which the yeast [PSI(+)] prion form of Sup35 arises de novo is controlled by a number of genetic and environmental factors. We have previously shown that in cells lacking the antioxidant peroxiredoxin proteins Tsa1 and Tsa2, the frequency of de novo formation of [PSI(+)] is greatly elevated. We show here that Tsa1/Tsa2 also function to suppress the formation of the [PIN(+)] p...

متن کامل

Peroxiredoxin Tsa1 Is the Key Peroxidase Suppressing Genome Instability and Protecting against Cell Death in Saccharomyces cerevisiae

Peroxiredoxins (Prxs) constitute a family of thiol-specific peroxidases that utilize cysteine (Cys) as the primary site of oxidation during the reduction of peroxides. To gain more insight into the physiological role of the five Prxs in budding yeast Saccharomyces cerevisiae, we performed a comparative study and found that Tsa1 was distinguished from the other Prxs in that by itself it played a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 412 1  شماره 

صفحات  -

تاریخ انتشار 2008