Isolation and characterization of Chinese hamster ovary cell mutants defective in assembly of peroxisomes

نویسندگان

  • T Tsukamoto
  • S Yokota
  • Y Fujiki
چکیده

We made use of autoradiographic screening to isolate two Chinese hamster ovary (CHO) cell mutants deficient in peroxisomal dihydroxyacetonephosphate acyltransferase, a key enzyme for the biosynthesis of ether glycerolipids such as plasmalogens. Morphological analysis revealed no evidence of peroxisome in these mutants. Catalase was as active as in the normal cells but was not sedimentable. Pulse-chase radiolabeling experiments and cell-free translation of RNA demonstrated that acyl-CoA oxidase, the first enzyme of the peroxisomal beta-oxidation system, was synthesized as the 75-kD form but was not converted to 53- and 22-kD mature components that were present in the wild-type CHO cells; rather, degradation was apparent. Peroxisomal thiolase was synthesized as in normal cells but remained as a larger, 44-kD precursor, whereas maturation to the 41-kD enzyme was detected in the wild-type cells. The peroxisomal 70-kD integral membrane protein was also equally synthesized, as in the wild-type cells, and was not degraded. These results suggest that assembly of the peroxisomes is defective in the mutants, whereas the synthesis of peroxisomal proteins appears to be normal. Cell-fusion studies revealed that the two mutants are recessive to the wild-type CHO cells and belong to different complementation groups. Thus, these mutants presumably contain different lesions in gene(s) encoding factor(s) required for peroxisome assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isolation and Characterization of a New Peroxisome Deficient CHO Mutant Cell Belonging to Complementation Group 12

We searched for novel Chinese hamster ovary (CHO) cell mutants defective in peroxisome biogenesis by an improved method using peroxisome targeting sequence (PTS) of Pex3p (amino acid residues 1–40)-fused enhanced green fluorescent protein (EGFP). From mutagenized TKaEG3(1–40) cells, the wild-type CHO-K1 stably expressing rat Pex2p and of rat Pex3p(1–40)-EGFP, numerous cell colonies resistant to...

متن کامل

Animal cell mutants represent two complementation groups of peroxisome-defective Zellweger syndrome.

Generalized peroxisome-deficient disorders including cerebro-hepato-renal Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease are autosomal recessive diseases, where catalase-containing particles (peroxisomes) are morphologically absent. We previously isolated two Chinese hamster ovary (CHO) cell mutants (Z24 and Z65) that resemble the fibroblasts from patients with ...

متن کامل

Intracellular Localization of FLAG-Peroxisomal Protein in Chinese Hamster Ovary (CHO) Cells

Epitope tagging is a method of expressing proteins whereby an epitope for a specific monoclonal antibody is fused to a target protein using recombinant DNA techniques. The aim of this study was to sub-clone the peroxisomal protein (PEP) cDNA into a mammalian expression vector leading to the formation of a  chimeric PEP-cDNA containing the FLAG epitope. The FLAG-PEP recombinant cDNA was construc...

متن کامل

Genetic basis of peroxisome-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts.

Citation for published version (APA): Shimozawa, N., Suzuki, Y., Zhang, Z., Imamura, A., Kondo, N., Kinoshita, N., ... Wanders, R. J. A. (1998). Genetic basis of peroxisomes-assembly mutants of humans, Chinese hamster ovary cells, and yeast: identification of a new complementation group of peroxisome-biogenesis disorders apparently lacking peroxisomal-membrane ghosts (letter). American Journal ...

متن کامل

Isolation and characterization of a Chinese hamster ovary (CHO) mutant defective in the second step of glycosylphosphatidylinositol biosynthesis.

Mutant cell lines defective in the biosynthesis of glycosylphosphatidylinositol (GPI) described to date were isolated by selecting cells which no longer expressed one or more endogenous GPI-anchored proteins on their surface. In this study, a new mutant in this pathway was isolated from ethylmethane-sulphonate-mutagenized Chinese hamster ovary cells stably transfected with human placental alkal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 110  شماره 

صفحات  -

تاریخ انتشار 1990