Retinal projection to the dorsal raphe nucleus in the Chilean degus (Octodon degus).
نویسندگان
چکیده
A substantial projection from the retina to the dorsal raphe nucleus (DRN) has been demonstrated in the Chilean degus, a diurnal/crepuscular hystricomorph rodent. Following intraocular injection of cholera toxin subunit B (CTB), immunocytochemically labeled CTB-positive axons and terminals were observed in all major retinorecipient nuclei as well as in the DRN and periaqueductal gray (PAG) of the mesencephalon. Two streams of optic axons to the DRN were observed: one descending from the optic tract at the level of the pretectum and anterior superior colliculus, the other emerging as a small fascicle at the anterior pole of the inferior colliculus and descending bilaterally through the PAG. Contralateral retinal afferents in the DRN appeared to terminate primarily in the dorsomedial and lateral subdivisions of the DRN, and a less extensive ipsilateral component also was observed. Axonal arborizations were characterized by short branches and multiple varicosities, both in the DRN and in the PAG. The extent and density of DRN retinal afferents were not as extensive as previously observed in Mongolian gerbils using identical techniques, but the retinal-DRN projection is considerably larger in degus than in rats. The functional significance of the retinal-DRN pathway remains to be determined, although a variety of evidence indicates that light may directly affect the activity of neurons and serotonin levels in the DRN.
منابع مشابه
Optic afferents to the parabrachial nucleus.
Following intraocular injection of cholera toxin subunit B (CTB), optic afferents to the dorsal pontine region were observed in Mongolian gerbils, Chilean degus, and laboratory rats. CTB-positive optic axons emerge at the caudal pole of the superior colliculus, descend through the periaqueductal gray, and innervate the lateral parabrachial nucleus. This projection appears to be a continuation o...
متن کاملDoes Nocturnality Drive Binocular Vision? Octodontine Rodents as a Case Study
Binocular vision is a visual property that allows fine discrimination of in-depth distance (stereopsis), as well as enhanced light and contrast sensitivity. In mammals enhanced binocular vision is structurally associated with a large degree of frontal binocular overlap, the presence of a corresponding retinal specialization containing a fovea or an area centralis, and well-developed ipsilateral...
متن کاملComparative water economy of sympatric rodents in a Chilean semi-arid habitat.
1. Water requirements, water balance components and dependence on exogenous water were estimated in four species of sympatric rodents inhabiting a Chilean semi-arid region. 2. A significant increase in free water drinking was observed in all rodents when the diet composition was changed from 14 to 20% protein. 3. Under water balance conditions the cricetid species (Phyllotis darwini, Oryzomys l...
متن کاملRetinal aging in the diurnal Chilean rodent (Octodon degus): histological, ultrastructural and neurochemical alterations of the vertical information processing pathway
The retina is sensitive to age-dependent degeneration. To find suitable animal models to understand and map this process has particular importance. The degu (Octodon degus) is a diurnal rodent with dichromatic color vision. Its retinal structure is similar to that in humans in many respects, therefore, it is well suited to study retinal aging. Histological, cell type-specific and ultrastructura...
متن کاملOctodon Degus: A Strong Attractor for Alzheimer Research
The most popular animal models of Alzheimer’s disease (AD) are transgenic mice expressing human genes with known mutations which do not represent the most abundant sporadic form of the disease. An increasing number of genetic, vascular and psychosocial data strongly support that the Octodon degus, a moderate-sized and diurnal precocial rodent, provides a naturalistic model for the study of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain research
دوره 895 1-2 شماره
صفحات -
تاریخ انتشار 2001