Rank-1 Tensor Approximation Methods and Application to Deflation

نویسندگان

  • Alex Pereira da Silva
  • Pierre Comon
  • André Lima Férrer de Almeida
چکیده

Because of the attractiveness of the canonical polyadic (CP) tensor decomposition in various applications, several algorithms have been designed to compute it, but efficient ones are still lacking. Iterative deflation algorithms based on successive rank-1 approximations can be used to perform this task, since the latter are rather easy to compute. We first present an algebraic rank-1 approximation method that performs better than the standard higher-order singular value decomposition (HOSVD) for three-way tensors. Second, we propose a new iterative rank-1 approximation algorithm that improves any other rank-1 approximation method. Third, we describe a probabilistic framework allowing to study the convergence of deflation CP decomposition (DCPD) algorithms based on successive rank-1 approximations. A set of computer experiments then validates theoretical results and demonstrates the efficiency of DCPD algorithms compared to other ones.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tensor Deflation for CANDECOMP/PARAFAC. Part 3: Rank Splitting

CANDECOMP/PARAFAC (CPD) approximates multiway data by sum of rank-1 tensors. Our recent study has presented a method to rank-1 tensor deflation, i.e. sequential extraction of the rank-1 components. In this paper, we extend the method to block deflation problem. When at least two factor matrices have full column rank, one can extract two rank-1 tensors simultaneously, and rank of the data tensor...

متن کامل

New Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada

Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...

متن کامل

un 2 00 9 Subtracting a best rank - 1 approximation may increase tensor rank

It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...

متن کامل

Subtracting a best rank-1 approximation does not necessarily decrease tensor rank

It has been shown that a best rank-R approximation of an order-k tensor may not exist when R ≥ 2 and k ≥ 3. This poses a serious problem to data analysts using tensor decompositions. It has been observed numerically that, generally, this issue cannot be solved by consecutively computing and subtracting best rank-1 approximations. The reason for this is that subtracting a best rank-1 approximati...

متن کامل

Structure-Preserving Low Multilinear Rank Approximation of Antisymmetric Tensors

This paper is concerned with low multilinear rank approximations to antisymmetric tensors, that is, multivariate arrays for which the entries change sign when permuting pairs of indices. We show which ranks can be attained by an antisymmetric tensor and discuss the adaption of existing approximation algorithms to preserve antisymmetry, most notably a Jacobi algorithm. Particular attention is pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1508.05273  شماره 

صفحات  -

تاریخ انتشار 2015