The Cramér-Rao bound for estimating a sparse parameter vector

نویسندگان

  • Zvika Ben-Haim
  • Yonina C. Eldar
چکیده

The goal of this contribution is to characterize the best achievable mean-squared error (MSE) in estimating a sparse deterministic parameter from measurements corrupted by Gaussian noise. To this end, an appropriate definition of bias in the sparse setting is developed, and the constrained Cramér–Rao bound (CRB) is obtained. This bound is shown to equal the CRB of an estimator with knowledge of the support set, for almost all feasible parameter values. Consequently, in the unbiased case, our bound is identical to the MSE of the oracle estimator. Combined with the fact that the CRB is achieved at high signal-to-noise ratios by the maximum likelihood technique, our result provides a new interpretation for the common practice of using the oracle estimator as a gold standard against which practical approaches are compared.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES The Cramér-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

The Cramer-Rao Bound for Sparse Estimation

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in ...

متن کامل

Bayesian Cramér-Rao Bound for Noisy Non-Blind and Blind Compressed Sensing

In this paper, we address the theoretical limitations in reconstructing sparse signals (in a known complete basis) using compressed sensing framework. We also divide the CS to non-blind and blind cases. Then, we compute the Bayesian Cramer-Rao bound for estimating the sparse coefficients while the measurement matrix elements are independent zero mean random variables. Simulation results show a ...

متن کامل

Covariance , Subspace , and Intrinsic Cramér - Rao Bounds Steven

Cramér-Rao bounds on estimation accuracy are established for estimation problems on arbitrary manifolds in which no set of intrinsic coordinates exists. The frequently encountered examples of estimating either an unknown subspace or a covariance matrix are examined in detail. The set of subspaces, called the Grassmann manifold, and the set of covariance (positive-definite Hermitian) matrices ha...

متن کامل

Parameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance

The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 58  شماره 

صفحات  -

تاریخ انتشار 2010