Fgd1, the Cdc42 GEF responsible for Faciogenital Dysplasia, directly interacts with cortactin and mAbp1 to modulate cell shape.

نویسندگان

  • Peng Hou
  • Lourdes Estrada
  • Andrew W Kinley
  • J Thomas Parsons
  • Anne B Vojtek
  • Jerome L Gorski
چکیده

FGD1 mutations result in Faciogenital Dysplasia (FGDY), an X-linked human disease that affects skeletal formation and embryonic morphogenesis. FGD1 and Fgd1, the mouse FGD1 ortholog, encode guanine nucleotide exchange factors (GEF) that specifically activate Cdc42, a Rho GTPase that controls the organization of the actin cytoskeleton. To further understand FGD1/Fgd1 signaling and begin to elucidate the molecular pathophysiology of FGDY, we demonstrate that Fgd1 directly interacts with cortactin and mouse actin-binding protein 1 (mAbp1), actin-binding proteins that regulate actin polymerization through the Arp2/3 complex. In yeast two-hybrid studies, cortactin and mAbp1 Src homology 3 (SH3) domains interact with a single Fgd1 SH3-binding domain (SH3-BD), and biochemical studies show that the Fgd1 SH3-BD directly binds to cortactin and mAbp1 in vitro. Immunoprecipitation studies show that Fgd1 interacts with cortactin and mAbp1 in vivo and that Fgd1 SH3-BD mutations disrupt binding. Immunocytochemical studies show that Fgd1 colocalizes with cortactin and mAbp1 in lamellipodia and membrane ruffles, and that Fgd1 subcellular targeting is dynamic. By using truncated cortactin proteins, immunocytochemical studies show that the cortactin SH3 domain targets Fgd1 to the subcortical actin cytoskeleton, and that abnormal Fgd1 localization results in actin cytoskeletal abnormalities and significant changes in cell shape and viability. Thus, this study provides novel in vitro and in vivo evidence that Fgd1 specifically and directly interacts with cortactin and mAbp1, and that these interactions play an important role in regulating the actin cytoskeleton and, subsequently, cell shape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fgd1, the Cdc42 guanine nucleotide exchange factor responsible for faciogenital dysplasia, is localized to the subcortical actin cytoskeleton and Golgi membrane.

FGD1, the gene responsible for the inherited disease faciogenital dysplasia, encodes a guanine nucleotide exchange factor (GEF) that specifically activates the p21 GTPase Cdc42. In order, FGD1 is composed of a proline-rich N-terminal region, adjacent GEF and pleckstrin homology (PH) domains, a FYVE-finger domain and a second C-terminal PH domain (PH2), structural motifs involved in signaling an...

متن کامل

Minireview: Role of genetic changes of faciogenital dysplasia protein 1 in human disease.

The FGD1 gene encodes for a guanine exchange factor (GEF) protein that specifically activates the Rho GTPase Cdc42. For cellular migration, Cdc42 is a key molecular switch that regulates cytoskeleton restructuring, gene transcription, cellular morphology, extension, and cell adhesion. In the past decade, germline mutations in the FGD1 gene have been associated with a rare X-linked disorder know...

متن کامل

Faciogenital dysplasia protein (FGD1) and Vav, two related proteins required for normal embryonic development, are upstream regulators of Rho GTPases

BACKGROUND Dbl, a guanine nucleotide exchange factor (GEF) for members of the Rho family of small GTPases, is the prototype of a family of 15 related proteins. The majority of proteins that contain a DH (Dbl homology) domain were isolated as oncogenes in transfection assays, but two members of the DH family, FGD1 (the product of the faciogenital dysplasia or Aarskog-Scott syndrome locus) and Va...

متن کامل

MLK3 regulates bone development downstream of the faciogenital dysplasia protein FGD1 in mice.

Mutations in human FYVE, RhoGEF, and PH domain-containing 1 (FGD1) cause faciogenital dysplasia (FGDY; also known as Aarskog syndrome), an X-linked disorder that affects multiple skeletal structures. FGD1 encodes a guanine nucleotide exchange factor (GEF) that specifically activates the Rho GTPase CDC42. However, the mechanisms by which mutations in FGD1 affect skeletal development are unknown....

متن کامل

FGD1 as a central regulator of extracellular matrix remodelling--lessons from faciogenital dysplasia.

Disabling mutations in the FGD1 gene cause faciogenital dysplasia (also known as Aarskog-Scott syndrome), a human X-linked developmental disorder that results in disproportionately short stature, facial, skeletal and urogenital anomalies, and in a number of cases, mild mental retardation. FGD1 encodes the guanine nucleotide exchange factor FGD1, which is specific for the Rho GTPase cell divisio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 12 16  شماره 

صفحات  -

تاریخ انتشار 2003