Multiplicatively Spectrum-preserving and Norm-preserving Maps between Invertible Groups of Commutative Banach Algebras

نویسندگان

  • OSAMU HATORI
  • TAKESHI MIURA
  • HIROYUKI TAKAGI
چکیده

Let A and B be unital semisimple commutative Banach algebras and T a map from the invertible group A onto B. Linearity and multiplicativity of the map are not assumed. We consider the hypotheses on T : (1) σ(TfTg) = σ(fg); (2) σπ(TfTg−α)∩σπ(fg−α) 6= ∅; (3) r(TfTg−α) = r(fg−α) hold for some non-zero complex number α and for every f, g ∈ A, where σ(·) (resp. σπ(·)) denotes the (resp. peripheral) spectrum and r(·) denotes the spectral radius. Under each of the hypotheses we show representations for T and under additional assumptions we show that T is extended to an algebra isomorphism. In particular, if T is a surjective group homomorphism such that T preserves the spectrum or T is a surjective isometry with respect to the spectral radius, then T is extended to an algebra isomorphism. Similar results holds for maps from A onto B.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum Preserving Linear Maps Between Banach Algebras

In this paper we show that if A is a unital Banach algebra and B is a purely innite C*-algebra such that has a non-zero commutative maximal ideal and $phi:A rightarrow B$ is a unital surjective spectrum preserving linear map. Then $phi$ is a Jordan homomorphism.

متن کامل

A Note on Spectrum Preserving Additive Maps on C*-Algebras

Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.

متن کامل

On Preserving Properties of Linear Maps on $C^{*}$-algebras

Let $A$ and $B$ be two unital $C^{*}$-algebras and $varphi:A rightarrow B$ be a linear map. In this paper, we investigate the structure of linear maps between two $C^{*}$-algebras that preserve a certain property or relation. In particular, we show that if $varphi$ is unital, $B$ is commutative and $V(varphi(a)^{*}varphi(b))subseteq V(a^{*}b)$ for all $a,bin A$, then $varphi$ is a $*$-homomorph...

متن کامل

Polynomially Spectrum-preserving Maps between Commutative Banach Algebras

Let A and B be unital semi-simple commutative Banach algebras. In this paper we study two-variable polynomials p which satisfy the following property: a map T from A onto B such that the equality σ(p(Tf, T g)) = σ(p(f, g)), f, g ∈ A holds is an algebra isomorphism.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009