On the Properties of Fibonacci Numbers with Binomial Coefficients
نویسندگان
چکیده
In this study, new properties of Fibonacci numbers is given. Also, generalization of some properties of Fibonacci numbers is investigated with binomial coefficiations. Mathematics Subject Classification: 11B39, 11B65
منابع مشابه
Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums
As in [1, 2], for rapid numerical calculations of identities pertaining to Lucas or both Fibonacci and Lucas numbers we present each identity as a binomial sum. 1. Preliminaries The two most well-known linear homogeneous recurrence relations of order two with constant coefficients are those that define Fibonacci and Lucas numbers (or Fibonacci and Lucas sequences). They are defined recursively ...
متن کاملCoefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers
In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers. Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.
متن کاملSome Congruences for Central Binomial Sums Involving Fibonacci and Lucas Numbers
We present several polynomial congruences about sums with central binomial coefficients and harmonic numbers. In the final section we collect some new congruences involving Fibonacci and Lucas numbers.
متن کاملPrefab posets' Whitney numbers
We introduce a natural partial order ≤ in structurally natural finite subsets the cobweb prefabs sets recently constructed by the present author. Whitney numbers of the second kind of the corresponding subposet which constitute Stirling-like numbers' triangular array-are then calculated and the explicit formula for them is provided. Next-in the second construction-we endow the set sums of prefa...
متن کاملGeneralized Fibonacci polynomials and Fibonomial coefficients
The focus of this paper is the study of generalized Fibonacci polynomials and Fibonomial coefficients. The former are polynomials {n} in variables s, t given by {0} = 0, {1} = 1, and {n} = s{n−1}+t{n−2} for n ≥ 2. The latter are defined by { n k } = {n}!/({k}!{n−k}!) where {n}! = {1}{2} . . . {n}. These quotients are also polynomials in s, t and specializations give the ordinary binomial coeffi...
متن کامل