Poincaré normal and renormalized forms

نویسنده

  • Giuseppe Gaeta
چکیده

Normal forms were introduced by Poincaré as a tool to integrate nonlinear systems; by now we know this is in general impossible, but it turned out that the usefulness of normal forms goes well beyond integrability. An introduction to normal forms is provided e.g. in [3, 5, 26, 41, 43, 47, 63]; see also [10, 33]. An introduction to normal forms for Hamiltonian systems is given in appendix 7 of [4]. Their use is, beyond integrability issues, of three kinds:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poincaré and Lie renormalized forms for regular singular points of vector fields in the plane

We discuss the local behaviour of vector fields in the plane R around a regular singular point, using recently introduced reduced normal forms, i.e. Poincaré and Lie renormalized forms [30, 31, 32]. We give a complete classification, and provide explicit formulas, using Poincaré renormalized forms for non-degenerate cases, and Lie ones for certain degenerate cases. Both schemes are completely a...

متن کامل

Poincaré normal forms and simple compact Lie groups

We classify the possible behaviour of Poincaré-Dulac normal forms for dynamical systems in R with nonvanishing linear part and which are equivariant under (the fundamental representation of) all the simple compact Lie algebras and thus the corresponding simple compact Lie groups. The “renormalized forms” (in the sense of [22]) of these systems is also discussed; in this way we are able to simpl...

متن کامل

Renormalizing Curvature Integrals on Poincaré-einstein Manifolds

After analyzing renormalization schemes on a Poincaré-Einstein manifold, we study the renormalized integrals of scalar Riemannian invariants. The behavior of the renormalized volume is well-known, and we show any scalar Riemannian invariant renormalizes similarly. We consider characteristic forms and their behavior under a variation of the Poincaré-Einstein structure, and obtain, from the renor...

متن کامل

Poincar E Renormalized Forms and Regular Singular Points of Vector Elds in the Plane

We discuss the local behaviour of vector elds in the plane R 2 around a singular point (i.e. a zero), on the basis of standard (Poincar e-Dulac) normal forms theory, and from the point of view of Poincar e renormalized forms 28]. We give a complete classiication for regular singular points and provide explicit formulas for non-degenerate cases. A computational error for a degenerate case of cod...

متن کامل

ar X iv : m at h - ph / 0 10 10 22 v 1 2 3 Ja n 20 01 Poincaré renormalized forms and regular singular points of vector fields in the plane Giuseppe

We discuss the local behaviour of vector fields in the plane R around a singular point (i.e. a zero), on the basis of standard (PoincaréDulac) normal forms theory, and from the point of view of Poincaré renormalized forms [28]. We give a complete classification for regular singular points and provide explicit formulas for non-degenerate cases. A computational error for a degenerate case of codi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001