Aging-resistant organophosphate bioscavenger based on polyethylene glycol-conjugated F338A human acetylcholinesterase.
نویسندگان
چکیده
The high reactivity of cholinesterases (ChEs) toward organophosphorus (OP) compounds has led to propose recombinant ChEs as bioscavengers of nerve agents. The bioscavenging potential of recombinant ChEs can be enhanced by conjugation of polyethylene glycol (PEG) moieties, to extend their circulatory residence. However, the ability of exogenously administered ChEs to confer long-term protection against repeated exposures to nerve agents is still limited due to the aging process, whereby organophosphate-ChE adducts undergo irreversible dealkylation, which precludes oxime-mediated reactivation of the enzyme. To generate an optimal acetylcholinesterase (AChE)-based OP bioscavenger, the F338A mutation, known to decelerate the rate of aging of AChE-OP conjugates, was incorporated into polyethylene glycol-conjugated (PEGylated) human AChE. The PEGylated F338A-AChE displayed unaltered rates of hydrolysis, inhibition, phosphylation, and reactivation and could effectively protect mice against exposure to soman (pinacolylmethyl phosphonofluoridate), sarin (O-isopropyl methylphosphonofluoridate), or O-ethyl-S-(2-isopropylaminoethyl) methylphosphonothioate (VX). Unlike PEGylated wild-type (WT)-AChE, the PEGylated F338A-AChE exhibits significantly reduced aging rates after soman inhibition and can be efficiently reactivated by the 1-[[[4(aminocarbonyl)-pyridinio]methoxy]methyl]-2(hydroxyimino)methyl]pyridinium dichloride (HI-6) oxime, both in vitro and in vivo. Accordingly, oxime administration to PEG-F338A-AChE-pretreated mice enabled them to withstand repeated soman exposure (5.4 and 4 LD(50)/dose), whereas same regime treatment of non-PEGylated F338A-AChE- or PEGylated WT-AChE-pretreated mice failed to protect against the second challenge, due to rapid clearance or irreversible aging of the latter enzymes. Thus, judicious incorporation of selected mutations into the AChE mold in conjunction with its chemical modification provides means to engineer an optimal ChE-based OP bioscavenger in terms of circulatory longevity, resistance to aging, and reduced doses required for protection, even against repeated exposures to nerve agents, such as soman.
منابع مشابه
Comparison of polyethylene glycol-conjugated recombinant human acetylcholinesterase and serum human butyrylcholinesterase as bioscavengers of organophosphate compounds.
Comparative protection studies in mice demonstrate that on a molar basis, recombinant human acetylcholinesterase (rHuAChE) confers higher levels of protection than native human butyrylcholinesterase (HuBChE) against organophosphate (OP) compound intoxication. For example, mice challenged with 2.5 LD50 of O-isopropyl methylphosphonofluoridate (sarin), pinacolylmethyl phosphonofluoridate (soman),...
متن کاملControlled concealment of exposed clearance and immunogenic domains by site-specific polyethylene glycol attachment to acetylcholinesterase hypolysine mutants.
Cholinesterases are efficient scavengers of organophosphates and are currently being developed as drugs for treatment against poisoning by such compounds. Recombinant ChE bioscavengers have very short circular longevity, a limitation that can be overcome by complex post-translation manipulations or by chemical modification such as polyethylene glycol conjugation. Series of multiple Lys-Ala muta...
متن کاملCorrigendum: Harnessing Nature’s Diversity: Discovering organophosphate bioscavenger characteristics among low molecular weight proteins
Organophosphate poisoning can occur from exposure to agricultural pesticides or chemical weapons. This exposure inhibits acetylcholinesterase resulting in increased acetylcholine levels within the synaptic cleft causing loss of muscle control, seizures, and death. Mitigating the effects of organophosphates in our bodies is critical and yet an unsolved challenge. Here, we present a computational...
متن کاملAging of phosphylated human acetylcholinesterase: catalytic processes mediated by aromatic and polar residues of the active centre.
We have examined the effects of 11 substitutions of active centre gorge residues of human acetylcholinesterase (HuAChE) on the rates of phosphonylation by 1,2,2-trimethylpropyl methyl-phosphonofluoridate (soman) and the aging of the resulting conjugates. The rates of phosphonylation were reduced to as little as one-seventieth, mainly in mutants of the hydrogen-bond network (Glu-202, Glu-450, Ty...
متن کاملProtective efficacy of catalytic bioscavenger, paraoxonase 1 against sarin and soman exposure in guinea pigs.
Human paraoxonase 1 (PON1) has been portrayed as a catalytic bioscavenger which can hydrolyze large amounts of chemical warfare nerve agents (CWNAs) and organophosphate (OP) pesticides compared to the stoichiometric bioscavengers such as butyrylcholinesterase. We evaluated the protective efficacy of purified human and rabbit serum PON1 against nerve agents sarin and soman in guinea pigs. Cataly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2008