How many zeros of a random polynomial are real?
نویسندگان
چکیده
Abstract. We provide an elementary geometric derivation of the Kac integral formula for the expected number of real zeros of a random polynomial with independent standard normally distributed coefficients. We show that the expected number of real zeros is simply the length of the moment curve (1, t, . . . , tn) projected onto the surface of the unit sphere, divided by π. The probability density of the real zeros is proportional to how fast this curve is traced out. We then relax Kac’s assumptions by considering a variety of random sums, series, and distributions, and we also illustrate such ideas as integral geometry and the Fubini-Study metric.
منابع مشابه
On Classifications of Random Polynomials
Let $ a_0 (omega), a_1 (omega), a_2 (omega), dots, a_n (omega)$ be a sequence of independent random variables defined on a fixed probability space $(Omega, Pr, A)$. There are many known results for the expected number of real zeros of a polynomial $ a_0 (omega) psi_0(x)+ a_1 (omega)psi_1 (x)+, a_2 (omega)psi_2 (x)+...
متن کاملDomain of attraction of normal law and zeros of random polynomials
Let$ P_{n}(x)= sum_{i=0}^{n} A_{i}x^{i}$ be a random algebraicpolynomial, where $A_{0},A_{1}, cdots $ is a sequence of independent random variables belong to the domain of attraction of the normal law. Thus $A_j$'s for $j=0,1cdots $ possesses the characteristic functions $exp {-frac{1}{2}t^{2}H_{j}(t)}$, where $H_j(t)$'s are complex slowlyvarying functions.Under the assumption that there exist ...
متن کاملOn the Expected Number of Real Roots of a System of Random Polynomial Equations
We unify and generalize several known results about systems of random polynomials. We first classify all orthogonally invariant normal measures for spaces of polynomial mappings. For each such measure we calculate the expected number of real zeros. The results for invariant measures extend to underdetermined systems, giving the expected volume for orthogonally invariant random real projective v...
متن کامل