The Two-Dimensional Bose-Einstein Condensate

نویسندگان

  • Juan Pablo Fernández
  • William J. Mullin
چکیده

We study the Hartree-Fock-Bogoliubov mean-field theory as applied to a two-dimensional finite trapped Bose gas at low temperatures and find that, in the Hartree-Fock approximation, the system can be described either with or without the presence of a condensate; this is true in the thermodynamic limit as well. We are unable to find condensate solutions when we consider a scheme that predicts the presence of phonons; moreover, the uncondensed solution, which is still valid when phonons are allowed, has a lower free energy at all temperatures. This seems to indicate that low-energy phonons destabilize the two-dimensional condensate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solitons for nearly integrable bright spinor Bose-Einstein condensate

‎Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation‎, ‎soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates‎. ‎A small disturbance of the integrability condition can be considered as a small correction to the integrable equation‎. ‎By choosing appropriate perturbation‎, ‎the soli...

متن کامل

Anomalous fluctuations of two-dimensional Bose-Einstein condensates

We investigate the particle-number fluctuations of condensate due to collective excitations for trapped two-dimensional (2D) and quasi-2D Bose gases at low temperature. We show that the fluctuations of the condensate are proportional to the square of the total particle number of the system. For a quasi-2D Bose gas the fluctuations are also proportional to the square root of the trapping frequen...

متن کامل

Two-dimensional periodic waves in supersonic flow of a Bose–Einstein condensate

Stationary periodic solutions of the two-dimensional Gross–Pitaevskii equation are obtained and analysed for different parameter values in the context of the problem of a supersonic flow of a Bose–Einstein condensate past an obstacle. The asymptotic connections with the corresponding periodic solutions of the Korteweg–de Vries and nonlinear Schrödinger equations are studied and typical spatial ...

متن کامل

6 Two - dimensional periodic waves in a supersonic flow of a Bose - Einstein condensate

Stationary periodic solutions of the two-dimensional Gross-Pitaevskii equation are obtained and analyzed for different parameter values in the context of the problem of a supersonic flow of a Bose-Einstein condensate past an obstacle. The asymptotic connections with the corresponding periodic solutions of the Korteweg-de Vries and nonlinear Schrödinger equations are studied and typical spatial ...

متن کامل

Two-dimensional Bose-Einstein condensate in an optical surface trap.

We report on the creation of a two-dimensional Bose-Einstein condensate of cesium atoms in a gravito-optical surface trap. The condensate is produced a few microm above a dielectric surface on an evanescent-wave atom mirror. After evaporative cooling by all-optical means, expansion measurements for the tightly confined vertical motion show energies well below the vibrational energy quantum. The...

متن کامل

Vortex Nucleation and Array Formation in a Rotating Bose-Einstein Condensate

We study the dynamics of vortex lattice formation of a rotating trapped Bose-Einstein condensate by numerically solving the two-dimensional GrossPitaevskii equation, and find that the condensate undergoes elliptic deformation, followed by unstable surface-mode excitations before forming a quantized vortex lattice. The dependence of the number of vortices on the rotation frequency is obtained. P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008