Construction and characterization of a highly efficient Francisella shuttle plasmid.
نویسندگان
چکیده
Francisella tularensis is a facultative intracellular pathogen that infects a wide variety of mammals and causes tularemia in humans. It is recognized as a potential agent of bioterrorism due to its low infectious dose and multiple routes of transmission. To date, genetic manipulation in Francisella spp. has been limited due to the inefficiency of DNA transformation, the relative lack of useful selective markers, and the lack of stably replicating plasmids. Therefore, the goal of this study was to develop an enhanced shuttle plasmid that could be utilized for a variety of genetic procedures in both Francisella and Escherichia coli. A hybrid plasmid, pFNLTP1, was isolated that was transformed by electroporation at frequencies of >1 x 10(7) CFU mug of DNA(-1) in F. tularensis LVS, Francisella novicida U112, and E. coli DH5alpha. Furthermore, this plasmid was stably maintained in F. tularensis LVS after passage in the absence of antibiotic selection in vitro and after 3 days of growth in J774A.1 macrophages. Importantly, F. tularensis LVS derivatives carrying pFNLTP1 were unaltered in their growth characteristics in laboratory medium and macrophages compared to wild-type LVS. We also constructed derivatives of pFNLTP1 containing expanded multiple cloning sites or temperature-sensitive mutations that failed to allow plasmid replication in F. tularensis LVS at the nonpermissive temperature. In addition, the utility of pFNLTP1 as a vehicle for gene expression, as well as complementation, was demonstrated. In summary, we describe construction of a Francisella shuttle plasmid that is transformed at high efficiency, is stably maintained, and does not alter the growth of Francisella in macrophages. This new tool should significantly enhance genetic manipulation and characterization of F. tularensis and other Francisella biotypes.
منابع مشابه
Exploiting a natural auxotrophy for genetic selection.
We exploited the natural histidine auxotrophy of Francisella species to develop hisD (encodes histidinol dehydrogenase) as a positive selection marker. A shuttle plasmid (pBR103) carrying Escherichia coli hisD and designed for cloning of PCR fragments replicated in both attenuated and highly virulent Francisella strains. During this work, we formulated a simplified defined growth medium for Fra...
متن کاملConstruction of an Expression Plasmid (Vector) Encoding Brucella melitensis Outer Membrane Protein, a Candidate for DNA Vaccine
Background: DNA vaccination with plasmid encoding bacterial, viral, and parasitic immunogens has been shown to be an attractive method to induce efficient immune responses. Bacteria of the genus Brucella are facultative intracellular pathogens for which new and efficient vaccines are needed. Methods: To evaluate the use of a DNA immunization strategy for protection against brucellosis, a pla...
متن کاملMolecular method for discrimination between Francisella tularensis and Francisella-like endosymbionts.
Environmental studies on the distribution of Francisella spp. are hampered by the frequency of Francisella-like endosymbionts that can produce a misleading positive result. A new, efficient molecular method for detection of Francisella tularensis and its discrimination from Francisella-like endosymbionts, as well as two variants associated with human disease (unusual F. tularensis strain FnSp1 ...
متن کاملHighly efficient yeast-based in vivo DNA cloning of multiple DNA fragments and the simultaneous construction of yeast/ Escherichia coli shuttle vectors.
In vivo recombinational cloning in yeast is a very efficient method. Until now, this method has been limited to experiments with yeast vectors because most animal, insect, and bacterial vectors lack yeast replication origins. We developed a new system to apply yeast-based in vivo cloning to vectors lacking yeast replication origins. Many cloning vectors are derived from the plasmid pBR322 and h...
متن کاملConstruction of an Escherichia coli-Clostridium perfringens shuttle vector and plasmid transformation of Clostridium perfringens.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 70 12 شماره
صفحات -
تاریخ انتشار 2004