Probabilistic Inference on Three-Valued Logic
نویسنده
چکیده
In this paper, we extend Nilsson’s probabilistic logic [1] to allow that each sentence S has three sets of possible worlds. We adopt the ideas of consistency and possible worlds introduced by Nilsson in [1], but propose a new method called linear equation method to deal with the problems of probabilistic inference, the results of our method is consistent with those of Yao’s interval-set model method.
منابع مشابه
Modeling Markov Decision Processes with Imprecise Probabilities Using Probabilistic Logic Programming
We study languages that specify Markov Decision Processes with Imprecise Probabilities (MDPIPs) by mixing probabilities and logic programming. We propose a novel language that can capture MDPIPs and Markov Decision Processes with Set-valued Transitions (MDPSTs); we then obtain the complexity of one-step inference for the resulting MDPIPs and MDPSTs. We also present results of independent intere...
متن کاملA Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملApplications of Nonclassical Logic Methods for Purposes of Knowledge Discovery and Data Mining1
Abstract: Methods for solution of a large class of problems on the base of nonclassical, multiple-valued, and probabilistic logics have been discussed. A theory of knowledge about changing knowledge, of defeasible inference, and network approach to an analogous derivation have been suggested. A method for regularity search, logic-axiomatic and logic-probabilistic methods for learning of terms a...
متن کاملA Hybrid Approach to Inference in Probabilistic Non-Monotonic Logic Programming
We present a probabilistic inductive logic programming framework which integrates non-monotonic reasoning, probabilistic inference and parameter learning. In contrast to traditional approaches to probabilistic Answer Set Programming (ASP), our framework imposes only comparatively little restrictions on probabilistic logic programs in particular, it allows for ASP as well as FOL syntax, and for ...
متن کاملConditional Objects as Nonmonotonic Consequence Relationships
This paper is an investigation of the relationship between conditional objects obtained as a qualitative counterpart to conditional probabilities, and nonmonotonic reasoning. Roughly speaking, a conditional object can be seen as a generic rule which allows us to get a conclusion provided that the available information exactly corresponds to the "context" part of the conditional object. This giv...
متن کامل