Noise Properties of Rectifying Nanopores

نویسندگان

  • M. R. Powell
  • N. Sa
  • M. Davenport
  • K. Healy
  • I. Vlassiouk
  • S. E. Letant
  • L. A. Baker
  • Z. S. Siwy
چکیده

Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltagedependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Precise control of the size and noise of solid-state nanopores using high electric fields.

We present a methodology for preparing silicon nitride nanopores that provides in situ control of size with sub-nanometer precision while simultaneously reducing electrical noise by up to three orders of magnitude through the cyclic application of high electric fields in an aqueous environment. Over 90% of nanopores treated with this technique display desirable noise characteristics and readily...

متن کامل

A nanodevice for rectification and pumping ions

The transport properties of single asymmetric nanopores in polyetheylene terephthalate ~PET! are examined. The pores were produced by a track etching technique based on the irradiation of the foils by swift heavy ions and subsequent chemical etching. Electrical conductivity measurements show that the nanopores in PET are cation selective and rectify the current with the preferential direction o...

متن کامل

Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.

Herein we report a theoretical study of diode-like behavior of negatively charged (e.g., glass or silica) nanopores at different potential scan rates (1-1000 V·s(-1)). Finite element simulations were used to determine current-voltage characteristics of conical nanopores at various electrolyte concentrations. This study demonstrates that significant changes in rectification behavior can be obser...

متن کامل

1/f noise in graphene nanopores.

Graphene nanopores are receiving great attention due to their atomically thin membranes and intrinsic electrical properties that appear greatly beneficial for biosensing and DNA sequencing. Here, we present an extensive study of the low-frequency 1/f noise in the ionic current through graphene nanopores and compare it to noise levels in silicon nitride pore currents. We find that the 1/f noise ...

متن کامل

Differentiation of short, single-stranded DNA homopolymers in solid-state nanopores.

In the last two decades, new techniques that monitor ionic current modulations as single molecules pass through a nanoscale pore have enabled numerous single-molecule studies. While biological nanopores have recently shown the ability to resolve single nucleotides within individual DNA molecules, similar developments with solid-state nanopores have lagged, due to challenges both in fabricating ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011